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Abstract—Tensor decompositions (TDs) and ten-
sor networks (TNs) are emerging and promising tools
for distributed representation of large-scale data, fea-
ture extraction and data mining. In this paper we re-
view briefly multiway components analysis, that is
multilinear (tensor) generalizations of two-way com-
ponents analysis, especially, PCA/SVD, ICA, NMF,
SCA, CCA/PLS. We will also discuss some challeng-
ing problems and future perspectives related to big
data analysis.

1. Introduction and Motivations

Tensors are adopted in diverse branches of science
and data analysis such as signal and image process-
ing, Psychometric, Chemometrics, Biometric, Quan-
tum Physics/Information, Quantum Chemistry and
Brain Science [1–7]. Modern scientific areas such as
bioinformatics or computational brain science gen-
erate massive amounts of data collected in various
forms of big, sparse tabular, graphs or networks with
multiple aspects and high dimensionality. Tensors,
which are multi-dimensional generalizations of ma-
trices, provide often a meaningful sparse and dis-
tributed representation for such data. TDs and TNs
provide some natural and flexible extensions of blind
source separation (BSS) or, more generally, two-way
(matrix) Components Analysis (2-way CA) to multi-
way components analysis (MWCA) methods [1, 4].
Moreover, TDs and TNs are potentially useful in
dimensionality reduction and for analysis of linked
(coupled) block of tensors [4].

A wealth of literature on (2-way) components anal-
ysis (CA) and BSS exists, especially on Principal Com-
ponent Analysis (PCA), Independent Component
Analysis (ICA), Sparse Component Analysis (SCA),
Nonnegative Matrix Factorizations (NMF), and Mor-
phological Component Analysis (MCA) [3, 8]. These
techniques are maturing, and have been proven as en-
abling tools for BSS, feature extraction, classification,
clustering, and 3D visualizations [3].

The “flattened view” provided by 2-way CA and
matrix factorizations (PCA/SVD, NMF, SCA, MCA)
may be inappropriate for large classes of real-world

data which exhibit multiple couplings and cross-
correlations. In this context, tensor decompositions
give us the opportunity to develop more sophis-
ticated models capturing multiple interactions and
couplings, instead of standard pairwise interactions.

Our main motivation and objective in this paper is
to review and further develop suitable tensor decom-
position models and associated learning algorithms
for large-scale multilinear BSS problems.

2. From Two-way to Multiway Components Analy-
sis

Our adopted convenience is that tensors are de-
noted by bold underlined capital letters, e.g., X ∈
RI1×I2×···×IN , and that all data are real-valued. The
order of a tensor is the number of its “modes”,
“ways” or “dimensions”, which include space, time,
frequency, trials, classes, and dictionaries. Matrices
(2nd-order tensors) are denoted by boldface capital
letters, e.g., X, and vectors (1st-order tensors) by bold-
face lowercase letters; for instance the columns of the
matrix A = [a1, a2, . . . , aR] ∈ RI×R are denoted by ar
and elements of a matrix (scalars) are denoted by low-
ercase letters, e.g., air. We refer to [2,5] for more detail
regarding the basic notations and tensor operations.

2.1. Constrained Matrix Factorizations and Decom-
positions – Two-Way Component Analysis

Two-way Components Analysis (2-way CA) ex-
ploits a priori knowledge about different character-
istics, features or morphology of components (or
source signals) [3] to find the hidden components
thorough constrained matrix factorizations of the
form

X = ABT + E =
R

∑
r=1

ar ◦ br + E =
R

∑
r=1

arbT
r + E, (1)

where the constraints imposed on factor matrices A
and/or B include orthogonality, sparsity, statistical
independence, nonnegativity or smoothness. The
CA can be considered as a bilinear (2-way) factor-
ization, where X ∈ RI×J is a known matrix of ob-
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served data, E ∈ RI×J represents residuals or noise,
A = [a1, a2, . . . , aR] ∈ RI×R is the unknown (usually,
full column rank R) mixing matrix with R basis vec-
tors ar ∈ RI , and B = [b1, b2, . . . , bR] ∈ RJ×R is the
matrix of unknown components (factors, latent vari-
ables, sources).

Two-way components analysis (CA) refers to a
class of signal processing techniques that decompose
or encode superimposed or mixed signals into com-
ponents with certain constraints or properties. The
CA methods exploit a priori knowledge about the true
nature or diversities of latent variables. By diversity,
we refer to different characteristics, features or mor-
phology of sources or hidden latent variables. For
example, the columns of the matrix B that represent
different data sources should be: as statistically inde-
pendent as possible for ICA; as sparse as possible for
SCA; take only nonnegative values for (NMF) [3].

Remark: Note that matrix factorizations have an
inherent symmetry, Eq. (1) could be written as XT ≈
BAT , thus interchanging the roles of sources and mix-
ing process.

Another virtue of components analysis comes from
a representation of multiple-subject, multiple-task
datasets by a set of data matrices Xk, allowing us to
perform simultaneous matrix factorizations:

Xk ≈ AkBT
k , (k = 1, 2, . . . , K), (2)

subject to various constraints. In the case of sta-
tistical independence constraints, the problem can
be related to models of group ICA through suitable
pre-processing, dimensionality reduction and post-
processing procedures [3, 9].

We will show how constrained matrix factoriza-
tions and components analysis (CA) models can
be naturally generalized to multilinear models us-
ing constrained tensor decompositions, such as the
Tucker and Canonical Polyadic Decomposition (CPD)
models, as illustrated in Figs. 1 (a) and (b).

2.2. Multiway Components Analysis Us-
ing Constrained and Unique Tucker and
CPD/PARAFAC Decompositions

The Tucker decomposition, especially constrained
Tucker is a basic and flexible tensor decomposition
model (see Fig. 1 (a)). The multiway components
analysis (MWCA) based on the Tucker-N model can
be considered as a natural and simple extension of
multilinear SVD and/or multilinear ICA, or NMF in
which we apply any efficient CA/BSS algorithms,
which often assure essential uniqueness of tensor de-
compositions [8, 10].

Fig. 2 illustrates the basic concept of MWCA and
its flexibility in choosing the mode-wise constraints;
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Figure 1: (a) Tucker decomposition of a 3rd-order ten-
sor X � G ×1 B(1) ×2 B(2) ×3 B(3). The objective is to
compute constrained factor matrices B(n) (whose columns
represent specific components) and core tensor G, which
indicates links between the components. In some ap-
plications, in the second stage, the core tensor is ap-
proximately factorized using the PARAFAC/CPD as G �

∑R
r=1 ar ◦ br ◦ cr. (b) TN diagrams for representation of

the Tucker and the CP decompositions in two-stage pro-
cedure for a 4th-order tensor as: X � G ×1 B(1) ×2
B(2) · · · ×4 B(4) = JG; B(1), B(2), B(3), B(4)K � (Λ ×1
A(1) ×2 A(2) · · · ×4 A(4)) ×1 B(1) ×2 B(2) · · · ×4 B(4) =

JΛ; B(1)A(1), B(2)A(2), B(3)A(3), B(4)A(4)K.

a Tucker representation of MWCA naturally accom-
modates such diversities in different modes [1]. Since
multiway array data can be always interpreted in
many different ways, some a priori knowledge is
needed to determine which diversities, characteris-
tics, features or properties represent true latent (hid-
den) components with physical meaning.

There are two possible approaches to interpret and
implement constrained Tucker decompositions for
MWCA. (1) the columns of the factor matrices B(n)

represent the desired latent variables, the core tensor
G has a role of “mixing process”, modeling the links
among the components from different modes, while
the data tensor X represents a collection of 1-D or 2-
D mixing signals; (2) the core tensor represents the
desired (but hidden) N-dimensional signal (e.g., 3D
MRI image or 4D video), while the factor matrices
represent mixing or filtering processes through e.g.,
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Figure 2: Illustration of Multiway Components Analysis
(MWCA) for a third-order tensor, assuming that the compo-
nents are: principal and orthogonal in the first mode, non-
negative and sparse in the second mode and statistically in-
dependent in the third mode. By unfolding a data tensor
into matrices we perform PCA/SVD, NMF/SCA and ICA
and explore link between them via the Tucker core tensor.

time-frequency transformations or wavelet dictionar-
ies [4].

The MWCA based on the Tucker-N model can be
computed directly in two steps: (1) for n = 1, 2, . . . , N
perform model reduction and unfolding of data ten-
sors sequentially and apply a suitable set of CA/BSS
algorithms to reduced unfolding matrices X̃(n), - in
each mode we can apply different constraints and al-
gorithms; (2) compute the core tensor using e.g., the
inversion formula: Ĝ = X ×1 B(1)† ×2 B(2)† · · · ×N
B(N)† [10]. This step is quite important because core
tensors illuminate complex links among the multiple
components in different modes [3].

Particularly interesting is NMF approach and its
generalization: Nonnegative Tucker decomposition
(NTD) – powerful techniques to analyze multi-
dimensional nonnegative matrix/tensor data, with
the aim of giving sparse localized parts-based repre-
sentation of high-dimensional objects. Recently, we
have shown how low (multilinear) rank approxima-
tion (LRA) of matrices and tensors is able to sig-
nificantly simplify the computation of the gradients
of the cost function, upon which a family of ef-
ficient first-order NMF/NTD algorithms are devel-
oped [8]. Besides dramatically reducing the storage
complexity and running time, the new algorithms
are quite flexible and robust to noise because many
well-established and efficient LRA methods can be
easily applied. We will show how nonnegativity in-
corporating sparsity substantially relax the unique-
ness conditions. The developed algorithms use the
first-order information (gradients) only and are free
of line search to search update steps (learning rates).
The LRA procedure not only significantly reduces the

computational complexity of subsequent nonnega-
tive matrix/tensorfactorization procedure in terms of
both time and space, but also substantially improves
the robustness to noise and flexibility of NMF/NTD
algorithms.

The CPD/PARAFAC model, which can be consid-
ered as special case of the Tucker model with a di-
agonal core tensor, is usually unique by itself, and
does not require constraints to impose uniqueness.
However, if components in one or more modes are
known to be e.g., nonnegative, orthogonal, statisti-
cally independent or sparse, these constraints should
be incorporated to relax dramatically uniqueness con-
ditions. More importantly, constraints may increase
the accuracy and stability of the CPD algorithms and
provide desired physical interpretability of compo-
nents [1, 11].

3. Distributed Tucker Decomposition using Tensor
Train Representation

In Figs. 3 (a) and (b) we have shown new dis-
tributed models for the Tucker-N model using tensor
train and tensor chain decompositions (compare with
QTT-Tucker model proposed in [12]). These model
allow us to decompose a large-scale data into core
tensors which represent useful hidden components or
features.

The Tensor Train (TT) decompositions [12, 13],
called also Matrix Product State/Operator
(MPS/MPO) in quantum information theory, are
the simplest TN models. In fact, the TT decomposi-
tions were rediscovered several times under different
names: MPS/MPO, valence bond states and density
matrix renormalization group (DMRG). The DMRG
usually means not only tensor format but also power-
full computational algorithms. The matrix TT model
(MPO) for 2Nth-order tensor A ∈ RI1×J1×···IN×JN ,
which is tensorized version of a large-scale matrix
A ∈ RI×J , with I = I1 I2 · · · IN , J = J1 J2 · · · JN ,
can be described mathematically in the following
general forms expressing via multilinear and outer
products [2]:

A � A(1) ×1
4 A(2) ×1

4 · · · ×1
4 A(N) (3)

=
R1,R2,...,RN−1

∑
r1,r2,...,rN−1=1

A(1)
1,r1
◦ A(2)

r1,r2 ◦ · · · ◦ A(N)
rN−1,1

where the 4th-order cores are defined as A(n) ∈
RRn−1×In×Jn×Rn , with R0 = RN = 1, (n = 1, 2, . . . , N).

The main advantage of distributed tensor decom-
position is that the size of each of the core tensors in
the internal tensor network structure is usually much
smaller than the original Tucker core tensor, so con-
sequently the total number of parameters can be re-
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Figure 3: New distributed models of the Tucker-N decom-
position X = G×1 A(1) ×2 A(2) · · · ×N A(N) ∈ RI1×I2×···IN ,
with In = I1,n I2,n · · · IN,n, (n = 1, 2, . . . , N) using: (a)
the Tensor Train (TT) model and (b) the Tensor Chain (TC)
model. The objective is to compute constrained cores A(k,n)

and G(k,n) for k, n = 1, 2, . . . , N

duced and model is suitable for big data representa-
tions [12] .

4. Conclusion

The main benefit of multiway (tensor) analysis
methods is to incorporate various diversities or con-
straints in different modes or different factors ma-
trices and core tensors, and thus naturally extend

the standard (2-way) components analysis methods
to multidimensional data. Furthermore, we devel-
oped powerful algorithms to analyze noisy, incom-
plete, missing data by using efficient low-rank ten-
sor/matrix approximation techniques and by exploit-
ing properties of distributed tensor decompositions.
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