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Abstract—This paper studies frequency entrainment in
externally excited phase oscillator from the viewpoint of
energy. The energy aspects originate from the fact that os-
cillators exchange the stored energy through coupling to
fall in synchronism. Averaged equation is derived by us-
ing the Jacobi elliptic functions. Numerical and analytical
results are shown with respect to phase difference and en-
ergy exchange. The obtained analytical result allows us to
extract the central operation from the excitation. In this pa-
per, it appears that frequency entrainment occurs through
operation of excitation to sustain the rotational motion and
regulate velocity in the phase oscillator.

1. Introduction

Frequency entrainment has been extensively investigated
in nonlinear dynamical systems [1, 2, 3]. The phenomenon
appears when coupled oscillators fall in synchronism with
each other. Energy aspects have been applied to the anal-
yses of frequency entrainment [4, 5, 6, 7, 8]. The view-
point originates from the fact that oscillators exchange the
stored energy through coupling to synchronize. The energy
exchange is regarded as an essential feature to understand
synchronization including frequency entrainment.

In this paper, we analyze frequency entrainment in an ex-
ternally excited phase oscillator based on energy exchange.
The dynamics of the system is described by the following
equation:

dφ
dt
= ω, (1a)

dω
dt
= −γω − sin φ + N + A sinΩt, (1b)

where γ denotes the damping coefficient, N the constant
torque, A and Ω the amplitude and frequency of excita-
tion, respectively. The phase oscillator is analogous to
many familiar nonlinear dynamical systems such as me-
chanical pendulum, Josephson junction circuit [9], phase-
locked loop [10], and power system [11]. Hence frequency
entrainment also appears in these systems and the entrained
state is represented by the stable rotation.

The Jacobi elliptic functions are known as appropriate
functions which can depict rotation. Indeed some works
have been reported which analyze rotational motion of

forced pendulum [12, 13]. The authors utilized the Jacobi
elliptic functions on the averaging of the rotational motion.
The functions make it possible to formulate an approxi-
mated solution for the rotation.

This paper studies frequency entrainment in a phase os-
cillator excited by harmonic torque from a viewpoint of en-
ergy. Averaged equation is derived through the Jacobi el-
liptic functions. Numerical and analytical results are shown
with respect to phase difference and energy exchange. On
the basis of these results, we discuss how the excitation in-
duces the rotational motion representing frequency entrain-
ment.

2. Averaging formed by elliptic functions

This section describes an averaging for rotational mo-
tion of the phase oscillator. The approximated solution is
formulated based on the Jacobi elliptic functions.

2.1. Approximated solution

In this section, we first formulate an approximated solu-
tion for rotational motion of the phase oscillator by using
Jacobi elliptic functions. An energy aspect determines the
formula of solution. The stored energy of phase oscillator,
H, is defined at a state (φ, ω) as

H(φ, ω) ,
1
2
ω2 − cos φ. (2)

When H > 1, the phase oscillator rotates. Rotational mo-
tion which conserves the stored energy H is focused on
here. The motion is represented by a closed orbit, called
constant-energy surface, in the cylindrical phase space [1].
By introducing a dependent variable ξ with the stored en-
ergy H fixed, that is, dH/dξ = 0, we can describe the dy-
namics as follows:

Ω0
dφ
dξ
=
∂

∂ω
H(φ, ω) = ω, (3a)

Ω0
dω
dξ
= −
∂

∂φ
H(φ, ω) = − sin φ. (3b)

Where Ω0 denotes the self-rotatory frequency of phase os-
cillator. The stored energy H can vary independently of the

2009 International Symposium on Nonlinear Theory and its Applications
NOLTA'09, Sapporo, Japan, October 18-21, 2009

- 46 -



variable ξ. Hence we assume another dependent variable a
which is defined as

a ,

√

H + 1
2
=

√

1
4
ω2
+ sin2 φ

2
. (4)

When a>1, rotational motions appear.
Substituting Eq. (4) into Eq. (3a) gives a definition of the

Jacobi elliptic function sn (aξ/Ω0, 1/a) [14]:

a
Ω0
ξ =

∫ φ

0

d(φ/2)
√

1 − a−2 sin2(φ/2)
= sn −1

(

sin
φ

2
,

1
a

)

. (5)

An inverse function of the integral in Eq. (5) is defined by

φ = 2 am
( a
Ω0
ξ,

1
a

)

, (6)

where am (aξ/Ω0, 1/a) is the Jacobi amplitude [14].
Eqs. (3a) and (6) gives a representation of ω:

ω = Ω0
∂φ

∂ξ
= 2a dn

( a
Ω0
ξ,

1
a

)

, (7)

where dn (aξ/Ω0, 1/a) is also the Jacobi elliptic function
[14]. Here we introduce a constant a0 as a value of a for
the periodic rotation of unexcited phase oscillator. The self-
rotatory frequency Ω0 is a function of a0. Considering ξ =
Ωt + θ and the difference between a and a0 determines an
approximated solution:

φ = 2 am
( a0

Ω0

(

Ωt + θ
)

,
1
a0

)

, (8a)

ω = 2a dn
( a0

Ω0

(

Ωt + θ
)

,
1
a0

)

. (8b)

The variable θ corresponds to the phase difference between
the rotational motion and the excitation.

2.2. Averaged equation

Averaged equation is derived for rotational motion of the
phase oscillator in this section. By substituting the approx-
imated solution (8) into Eq. (1) and averaging it, we obtain
the following averaged equation:

dθ
dt
= Ω0 − Ω − Θβ(θ, a, α), (9a)

da
dt
=
πN − 4γaE0

4K0
−

πA
4K0 cosh(πK′0/K0)

sin θ, (9b)

where K0 = K(1/a0) and E0 = E(1/a0) are elliptic inte-
grals of the first and second kind, respectively. In addition,
K′0 = K′(1/a0) = K([1 − 1/a2

0]1/2). The obtained aver-
aged equation (9) depends on the constant α which origi-
nates from the integral range on averaging. In Eq. (9a) the
term Θβ implies the influence of excitation upon the time
derivative of θ, which we call the external action, and is
decomposed into

Θ0(θ, a) =
πA

4aK0 cosh(πK′0/K0)
cos θ, (10)

Figure 1: Schematic diagram of external action on phase
dynamics determined by the integral range. Each arrow
depicts the phasor of external action. Θ0 denotes the fixed
component of external action, Θα the component depen-
dent on the integral range [α − π, α + π], and Θβ the phasor
sum of the above component. α and β represent the direc-
tion of Θα and Θβ. The ring reveals the integral range on
the averaging. BP, HP, LP, and BE symbols frequency re-
sponse characteristics for the direction of Θβ: band-pass,
low-pass, high-pass, and band-elimination.

and

Θα(θ, a, α) =
πA

4aK0
cos(θ − α). (11)

Fig. 1 shows the relationship between α and the external
action Θβ or the components Θ0, Θα.

3. Determination of Integral Range

This section gives an appropriate value to the integral
range on averaging. Numerical response curves guide the
decision of analytical response curves for the valid inte-
gral range. We here define numerically calculated phase θ
and external energyW. The variable θ corresponds to the
phase difference, which implies

θ =
〈

φ − Ωt
〉

, (12)

where 〈 · 〉 denotes time average. External energyW is de-
fined as

W = −
πAa sin θ

K0 cosh(πK′0/K0)
(13)

for the analytical study and

W =
〈

ωA sinΩt
〉

(14)

for the numerical study. The external energyW implies the
work done on the oscillator by the excitation physically. In
the following discussion, γ is set at 0.5 and N at 1.

Numerical response curves are studied to determine the
appropriate integral range through observation. Fig. 2
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Figure 2: Response curves of phase θ and external en-
ergy W obtained numerically at γ = 0.5 and N = 1. The
solid and dashed lines depict stable and unstable periodic
solutions, respectively.

shows the phase θ and the external energy W calculated
numerically. The solid and dashed lines illustrate stable
and unstable solutions, respectively. The response curves
of the phase θ have two boundaries related to the stabil-
ity at θ = ±π/2 + ǫ, where ǫ is a small positive. The
response curves of external energy W show the charac-
teristics: monotonically increasing with the excitation fre-
quency Ω and antiresonance.

By considering the above numerical result, we adopt the
condition at α = π− asin[tanh(πK′0/K0)]. Fig. 3 shows re-
sponse curves obtained analytically at the condition. The
range of phase θ completely characterizes the stability. Sta-
ble solution exists in the range (−π/2, π/2) and unstable so-
lution in the rest. The analytical response curves of phase θ
is consistent with the numerical one. On the other hand,
for the external energyW the analytical result captures the
characteristic of monotonic increase with the excitation fre-
quency Ω.

4. Discussion

In this section, we discuss the operation of excitation
which induces frequency entrainment: sustaining the ro-
tational motion and regulating the velocity. The obtained
analytical result allows us to extract the central operation
from the excitation.

An essential roles of the excitation is to sustain the en-

-π

-π/2

0

π/2

π

1.86 1.88 1.90 1.92 1.94 1.96 1.98 2.00

θ

(a)

A=0.05 0.10 0.20

-0.08

-0.04

0.00

0.04

0.08

1.86 1.88 1.90 1.92 1.94 1.96 1.98 2.00
W

Ω

(b)

A=0.05, 0.10, 0.20

Figure 3: Response curves of phase θ and external en-
ergy W obtained analytically at γ = 0.5 and N = 1 with
α = π − asin[tanh(πK′0/K0)]. The solid and dashed lines
illustrate stable and unstable equilibria, respectively.

Figure 4: Two intervals in rotational motion of the phase
oscillator; (a) φ∈ [0, π), (b) φ∈ [−π, 0).

trained rotational motion. We focus on the case at θ = 0
which implies the situation Ω = Ω0 to eliminate the other
operation of excitation, that is, regulation of rotational ve-
locity. At the case θ=0, the excitation operates on the phase
oscillator in the rotational direction when φ ∈ [0, φ) shown
by Fig. 4(a), and in the inverse direction when φ ∈ [−π, 0)
shown by Fig. 4(b). This behavior of excitation attenuates
the restoring force − sin φ. Because the restoring force in-
hibits the rotational motion of phase oscillator, this behav-
ior implies that the excitation assists the rotational motion.
On the other hand, the excitation cannot sustain the rota-
tional motion in |θ| ≫ 0. Thus, in θ is close to 0 the exci-
tation sustains the rotational motion of phase oscillator. In
addition, the operation does not produce any external en-
ergyW at θ=0 shown by Fig. 3.
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Figure 5: Two intervals in rotational motion; (a) φ∈ [π/2, π)
and φ∈ [−π,−π/2), (b) φ∈ [−π/2, π/2).

The other substantial operation of the excitation is the
regulation of the rotational velocity corresponding to fre-
quency entrainment. This point can be explained in an en-
ergy aspect. In the situation of Ω,Ω0 the phase oscillator
requires energy supply or energy loss induced by the ex-
citation because the phase oscillator keeps energy balance
at only Ω = Ω0. Fig. 3 shows that the external energy W
is negative in θ ∈ (0, π) and positive in θ ∈ (−π, 0). Hence
the energy balance is kept through the shift of θ. We give a
physical interpretation to the relationship between the ex-
ternal energyW and the phase θ. At θ=π/2, the excitation
operates on the phase oscillator in the rotational direction
when φ ∈ [π/2, π) and φ ∈ [−π,−π/2) shown by Fig. 5(a),
and in the inverse direction when φ ∈ [−π/2, π/2) shown
by Fig. 5(b). That is, the excitation supplies energy to the
oscillator in Fig. 5(a), and withdraws energy from the os-
cillator in Fig. 5(b). Energy loss in Fig. 5(a) is smaller than
energy supply in Fig. 5(b) because the rotational velocity in
Fig. 5(a) is smaller. The same discussion is applied to the
case at θ=−π/2. For another θ the total energy produced by
the excitation is determined by the magnitude of the shift
of θ. Thus the operation of excitation is appropriate to the
physical interpretations at α=π− asin[tanh(πK′0/K0)].

5. Concluding Remarks

This paper discussed frequency entrainment in the phase
oscillator from an aspect of energy. Averaged equation for
rotation was derived through the Jacobi elliptic functions
while the equation possesses an arbitrary property origi-
nated from integral range of averaging. In this paper, the
appropriate integral range is determined by observation on
numerical and analytical results. Then we discussed the
entrained rotational motion based on energy produced by
the excitation. The excitation entrains the phase oscillator
with the rotational motion sustained. When the excitation
frequency is different from the self-rotatory frequency, the
excitation regulates the rotational velocity and keeps en-
ergy balance with the phase shift. Thus, in the phase oscil-
lator, frequency entrainment appears through the operation
of excitation to sustain the rotational motion and regulate
the velocity.
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