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Abstract—This paper describes an approach to finding
out patterns of oscillations using symmetries. In order to
clarify oscillations in a three-phase circuit systematically,
we derive higher symmetric circuit, which is a three LC
ladder circuit. Using the symmetry of the circuit, we clas-
sify periodic and almost periodic oscillations and construct
the lattice of those oscillations. The lattice enables to pre- — 02 dé‘L ”gr-ﬁi 981
dict typical oscillations in the circuit. W)

r

1. Introduction Figure 1: Three-phase circuit

The symmetric three phase circuit shown in Fig.1 is a
fundamental model of power systems. The nonlinearity of
the delta-connected inductors generates many kinds of non-
linear oscillations, e.g., subharmonic oscillations[1], asym-
metric oscillations[4], cnoidal waves[2] and ILMs[3]. Al-
though the detail of bifurcations of each oscillation is an-
alyzed by the homotopy method[4], relations of each non-
linear oscillation are not clear.

In order to find out the oscillations in the three-phase cir-
cuit systematically, we consider higher symmetric circuit,
which is a three LC ladder circuit. The higher symmetries Figure 2: Three LC ladder circuit
of the circuit enables to list the patterns of oscillations and
predict typical oscillations.

First, we show the symmetry of the three LC ladder cir-
cuit and classify the periodic oscillations with respect tQ qenotes unit matrix and«(T denotes transposition.
the symmetries[5]. Next, we extend the method to aimosg . represents normalized circuit parameters which
periodic oscillations. Further, we confirm that the h'ghe'borresponds to Y-connected resistossconnected resis-
symmetric oscillations are generated in the circuit from th?ors, and angular frequency of the voltage sources, respec-
observation of the global phase space. tively. We assume that the characteristics of the flux in-

terlinkages(y) is represented by monotone increasing odd
2. Three-Phase Circuit And Three LC Ladder Circuit  function.
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The equation of the three-phase circuit shown in Fig.1 is In order to find out oscillations in the three-phase cir-
cuit, we derive higher symmetric circuit, which is a three

E( Yanc ) - ( —Aabdlabc  +€abc— Rabdabe ) (1) LC ladder circuit shown in Fig. 2, by removing the resis-

dt \ Uanc Alpdabc tors and voltage sources from the three-phase circuit. The
0 1 -1 equation of the circuit is
Aabc < [ —1 0 1 ] s

1-10 d(y A

‘ﬁabc = (lﬁa, lﬁb, WC)T a( uabc ) = ( Aﬁbfjabc ) (2)

Uabc < (Ua, Up, UC)T abc abd abc

Rabc 2 A;—bcAabCR-'_ Ir . . .

iabdWand = (i(¥a), (W), ()" For simplicity, we rewrite Eq.(2) by

€abdt) = EapdSiN(wet), sin(wet— %’r)a sin(wet+ %))T,

wherey . and uapc are the flux interlinkages of the in abe _ o Xabo), Xabe = (¢1a—bcv Ulb C)T. 3)

ductors and voltages of the capacitors, respectively. The  dt
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3. Symmetries of Three LC Ladder Circuit .
Table 1: Subgroups of Group

In order to describe the symmetry of the three LC ladder

circuit, we introduce the following permutatiogs ~ order 1 E =&
order 2 IR}
7=( a b C) xn € {a.b,c} (ne{ab,c), Vo 28 5l
Xa Xo Xc ) xn#xm(#mef{ab.cl). N (}ai“}
. . [(4) 2 la ¥ Fo 5
For example, cyclic permutation is represented by order 4 Fv =& oa ‘Ta'}
order 3 Cs 218 &, é%}
63 é( E 2 ;) (4) order 6 ?3 X[ z é, T, 63, 637, ég, (‘%‘[}
CsxV 2|8 &, €, Fa Ob, 5’c}
The actiorcs satisfies the following commutativity: CoxJ 288 &, ?’fv’l’i’ 5:ci2}
A é, 639 "3, IJ |é3‘,’ ié3’v
& apdXabd) = fapdEaXabo). () ordertz T ‘{ Far oy G 10700 1670, 107 }

This relation shows that the three LC ladder circuit has
cyclic symmetry. Next, we consider the reflection:

(30 0) ©)

a c b

The actiono satisfies the following commutativity:

Taf apdXabd = T apdTaXabd- @)

This relation shows that the three LC ladder circuit has re-

flection symmetry. It is noted that the three-phase circuit Figure 3: Lattice of subgroups &f
does not have the symmetry due to the three-phase source.

Further, we consider inversion symmetry based on the odd

symmetry of the functioin(y):

We normalize the time by the periddand consider period
27 oscillationX(d) : T* — RS, whereT! denotes 1-torus.

Kabe = 1 Xabo 8 whers
-~ abe - abc_ (®) Let us consider a subgrou c I'. If a periodic oscilla-
Yapc= ~Yabe Uabe= —Uabe- tion () satisfies
The action satisfies b= {77 e I I7(%(0)} = {)‘((g)}} (12)
fapdXand = FapdiXand- ©) for all the actions e H, the periodic oscillation has spatio-

temporal symmetry [5]. This relation shows that the

This relation shows that the three LC ladder circuit has in i the traiect q o e H
version symmetry. action preserves the trajectoryx®) and an actiory €

From the 3 symmetries, the three LC ladder circuit ha§3uses only a shift

the symmetry with respect to the grolip 9 € TL, 3%(6) = (6 - K). (13)
Ia { vé’ ‘:33’ ‘:3% VI v'v‘::3 I‘% } . (10) We represent the correspondence betyv;emnﬁk by a map
Oa 0Ob, Oc 10a 10, 10¢ k = (7). Then, the kernel of the ma is defined by

Subgroups of the group is listed in Tab.1 and the lattice Kz{yeH|0F) =0 (14)
of the subgroups are shown in Fig.3.
The kernelK derives a fixed-point subspace

4. Classification of Periodic Oscillations Fix(K) £ (x e R® | x = x, "5 € K} C RS, (15)

4.1. Spatio-temporal symmetry and spatial symmetry In this sence, the subgroug represents spatial symmetry

We consider period oscillations in the three LC ladder of the three LC ladder circuit. In order to exist periodic

circuit which satisfies oscillations, it is necessary that the/K is isomorphic to
cyclic groupCp, and that the dimension of FiK() is not
Xapdt) = Xapdt + T). (11) lessthan 2 [5].
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Table 2: Classification of periodic oscillations

H K label
r r 0
Cs x| E osc(c, i)
Cs Cs 0sc(c)
Cs E 0sé(c)
r® Vv osc(4)
r® J 0sé(4)
v \ osc/(v) Figure 4: Lattice of symmetric periodic oscillations.
\% E 0sE(v)
J J 0s¢(j)
J E 0s¢())
[ E 0sc(i) Lo
E E 0sé(e) % o AN /\
5 Vi VARV
a 1.0|
é 0
Table 3: Pattern of oscillations 10
label phasef ) comments S AN AL AL AL AN
0sCCIM; | &0) £0-K)  &0-20 | &) = @+ n).Ke [+Ke. Ka) 2.0 v VAN
0s¢(C) £(0) £00) £00) "0 T 2T 3T 4T 5T 6T 7T 8T 9T 10
0sc(c) £0) €0-K) £(0-2K) k € {+ks, —k3} timet (T =2.77)
Osg((ﬁl)) Mz 1(0) §E9; §(?)) -fgfg = —.fgeﬂf)i n(0) = —n(0+n)
0sé(4) M, 0 &0 —£(6 £0) = -£0 +n ; . ;
T ) ) 0 Figure 5: M; has symmetry w.r.t. reflection.
0s¢(v) n(6) £ E@+m) | n0) =n@+n) 10
0sd()) 0 &0 —-£(0) :
0s¢()) n®) &) —&(0+m) | n(6) = —n(0 + ) 20
E0) Xabd0) = —Xabd6+7) 10
0 \/ VIV VY
o 1.;) /\\\ “/‘,’\\ //”\ /A\ (’/«\ /A\ "“\ ‘/ﬁ\\ ‘f\ /,\\
Based on the above conditions, we can classify symmet- Ly VVVVVVVVYVYL
. . . . . . ~ 0 T 2T 3T 4T 5T 6T a 8T 9T 10
ric periodic oscillations with respect to the subgroups timet (T =2.92)
and K. The classified oscillations are listed in Tab.2 and _ .
the patterns of the oscillations are shown in Tab.3, where Figure 6: My has symmetry w.r.t. reflection.

n.& 1 Tt — R are period 2 functions, k = Zr, and M,
M2 and Ms denotes typical highly symmetric oscillations.
Further, the lattice of symmetric periodic oscillation on 3
LC ladder circuit with respect tél is shown in Fig.4.
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4.2. Higher symmetric oscillations

|
g [d s
09,9 oo © oo ©
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Let us consider the typical higher symmetric oscillations fimet (T = 3.26)
M1, M2 and Ms shown in Figs. 5, 6 and 7, respectivelyaM
and M, are symmetric with respect to the reflection and the
inversion. The dierence between Mand M, comes from
the spatial symmetry. The Mcorresponds to single-phase
oscillations in the three-phase circuit and the M unsta-
ble. In the sence of ILM, the Mand M, correspond to ST 5. Almost periodic oscillation
mode and Page mode, respectively[6]. The i®lsymmet-
ric with respect to the cyclic and inversion symmetry. The N
k = +ks andk = —k3 fix the propagating directions. 5.1. Definition

The symmetrical coordinates transform and the3 0 e .
coordinates transform for the symmetric three-phase cir- We extend the method of the classification of the peri-

cuit correspond to the cyclic and the reflection symme(-)d'c oscillations to almost periodic oscillations. We define

tries, respectively. The Mwith -+ks and—ks corresponds the almost periodic oscillation with normalized phé&dey

S . 2 6 ¥, .
to positive-phase-sequence and negative—phase—sequeﬁ@ : T — R®. Then, a subgroupl is defined by
component, respectively. The Mand M, corresponds to 5 5
@ component ang component, respectively. H = {7 e T 7(%(0)} = (X(0)}} (16)

Figure 7: Mz has symmetry w.r.t. cyclic symmetry.
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Figure 8: Lattice of almost periodic oscillations.

for all the actionye H. TheH-action preserves the trajec-
tory of X(6) and an actiory tauses only a shitt € T?:

0 € T2, y%(8) = X(0 — k). (17)
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timet (T=2.77)

Figure 9: Beat(v,l) has symmetry w.r.t. reflection.
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This relation defines a ma@(y) : H — T2 and the kernel Figure 10: Beat(c,i) has symmetry w.r.t. cyclic symmetry.

of the map®(y) is defined by

Kz{yeH|0@) =0. (18)
The subgrougK defines the fixed-point subspace Eq.(15).
The condition that® is a group homomorphism is de-
scribed by
H/K ~ Cm1 X Cro, (19)
whereml € Z is a divisor ofm2. Additionally, Fix(K) is
not less than 4. Based on the conditions, we can illustrate
the lattice of symmetric almost periodic oscillations shown
in Fig.8. The higher symmetric waveforms beat(v,i) and
beat(c,i) which belongs t¥ x | andCs x | respectively are
shown in Figs. 9 and 10.
In order to confirm oscillations in the three LC ladder
circuit, we calculate Poincare map of the cross section
Z = {(lﬁlh u(l/9 W,B’ uﬁ)'“(l = 0’ lﬁ(l/ > 0} 9 (20)
where the sfiixes andp represents andg coordinate [1]
in OaB coordinates. Although the original phase space is
6-dimension, assuming that 0-phase component is equal to

2.4
1.2}

ug o b

-l.2 ¢t

Figure 11: Poincare map
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