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Abstract—This paper describes an approach to finding
out patterns of oscillations using symmetries. In order to
clarify oscillations in a three-phase circuit systematically,
we derive higher symmetric circuit, which is a three LC
ladder circuit. Using the symmetry of the circuit, we clas-
sify periodic and almost periodic oscillations and construct
the lattice of those oscillations. The lattice enables to pre-
dict typical oscillations in the circuit.

1. Introduction

The symmetric three phase circuit shown in Fig.1 is a
fundamental model of power systems. The nonlinearity of
the delta-connected inductors generates many kinds of non-
linear oscillations, e.g., subharmonic oscillations[1], asym-
metric oscillations[4], cnoidal waves[2] and ILMs[3]. Al-
though the detail of bifurcations of each oscillation is an-
alyzed by the homotopy method[4], relations of each non-
linear oscillation are not clear.

In order to find out the oscillations in the three-phase cir-
cuit systematically, we consider higher symmetric circuit,
which is a three LC ladder circuit. The higher symmetries
of the circuit enables to list the patterns of oscillations and
predict typical oscillations.

First, we show the symmetry of the three LC ladder cir-
cuit and classify the periodic oscillations with respect to
the symmetries[5]. Next, we extend the method to almost
periodic oscillations. Further, we confirm that the higher
symmetric oscillations are generated in the circuit from the
observation of the global phase space.

2. Three-Phase Circuit And Three LC Ladder Circuit

The equation of the three-phase circuit shown in Fig.1 is

d
dt

(
ψabc
uabc

)
=

( −Aabcuabc +eabc− Rabciabc

AT
abciabc

)
. (1)

Aabc�

 0 1 −1
−1 0 1
1 −1 0

 ,
ψabc � (ψa, ψb, ψc)T

uabc � (ua, ub, uc)T

Rabc � AT
abcAabcR + Ir

iabc(ψabc)� (i(ψa), i(ψb), i(ψc))T

eabc(t) � Eabc(sin(ωet), sin(ωet− 2π
3 ), sin(ωet+ 2π

3 ))T,

whereψabc and uabc are the flux interlinkages of the in-
ductors and voltages of the capacitors, respectively. The
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Figure 1: Three-phase circuit
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Figure 2: Three LC ladder circuit

I denotes unit matrix and (∗)T denotes transposition.
R, r, ωe represents normalized circuit parameters which
corresponds to Y-connected resistors,∆-connected resis-
tors, and angular frequency of the voltage sources, respec-
tively. We assume that the characteristics of the flux in-
terlinkagesi(ψ) is represented by monotone increasing odd
function.

In order to find out oscillations in the three-phase cir-
cuit, we derive higher symmetric circuit, which is a three
LC ladder circuit shown in Fig. 2, by removing the resis-
tors and voltage sources from the three-phase circuit. The
equation of the circuit is

d
dt

(
ψabc
uabc

)
=

( −Aabcuabc

AT
abciabc

)
. (2)

For simplicity, we rewrite Eq.(2) by

dxabc

dt
= f abc(xabc), xabc= (ψT

abc, uT
abc)

T. (3)
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3. Symmetries of Three LC Ladder Circuit

In order to describe the symmetry of the three LC ladder
circuit, we introduce the following permutations ˇγ:

γ̌ =

(
a b c
χa χb χc

)
,
χn ∈ {a, b, c} (n ∈ {a, b, c}),
χn � χm (n � m ∈ {a, b, c}). .

For example, cyclic permutation is represented by

č3 �
(

a b c
b c a

)
. (4)

The action ˇc3 satisfies the following commutativity:

č3 f abc(xabc) = f abc(č3xabc). (5)

This relation shows that the three LC ladder circuit has
cyclic symmetry. Next, we consider the reflection:

σ̌a �
(

a b c
a c b

)
. (6)

The actionσ̌a satisfies the following commutativity:

σ̌a f abc(xabc) = f abc(σ̌axabc). (7)

This relation shows that the three LC ladder circuit has re-
flection symmetry. It is noted that the three-phase circuit
does not have the symmetry due to the three-phase source.
Further, we consider inversion symmetry based on the odd
symmetry of the functioni(ψ):

x̃abc= ǐxabc. (8)

ψ̃abc= −ψabc, ũabc= −uabc .

The actioňi satisfies

ǐ f abc(xabc) = f abc(ǐxabc). (9)

This relation shows that the three LC ladder circuit has in-
version symmetry.

From the 3 symmetries, the three LC ladder circuit has
the symmetry with respect to the groupΓ̌

Γ̌ �
{

ě, č3, č2
3, ǐ, ǐč3, ǐč2

3,

σ̌a, σ̌b, σ̌c, ǐσ̌a, ǐσ̌b, ǐσ̌c

}
. (10)

Subgroups of the group̌Γ is listed in Tab.1 and the lattice
of the subgroups are shown in Fig.3.

4. Classification of Periodic Oscillations

4.1. Spatio-temporal symmetry and spatial symmetry

We consider periodT oscillations in the three LC ladder
circuit which satisfies

xabc(t) = xabc(t + T ). (11)

Table 1: Subgroups of Group̌Γ

order 1 Ě � {ě}
order 2 Ǐ �

{
ě, ǐ

}
V̌ � {ě, σ̌a}
J̌ �

{
ě, σ̌aǐ

}
order 4 Γ̌(4) �

{
ě, ǐ, σ̌a, σ̌aǐ

}
order 3 Č3 �

{
ě, č3, č2

3

}
order 6 Č3 × Ǐ �

{
ě, ǐ, č3, č3ǐ, č2

3, č2
3ǐ
}

Č3 × V̌ �
{
ě, č3, č2

3, σ̌a, σ̌b, σ̌c

}
Č3 × J̌ �

{
ě, č3, č2

3, σ̌aǐ, σ̌bǐ, σ̌cǐ
}

order 12 Γ̌ �
{

ě, č3, č2
3, ǐ, ǐč3, ǐč2

3,

σ̌a, σ̌b, σ̌c, ǐσ̌a, ǐσ̌b, ǐσ̌c

}
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Figure 3: Lattice of subgroups ofΓ̌

We normalize the time by the periodT and consider period
2π oscillationx̂(θ) : T1 �→ R6, whereT1 denotes 1-torus.

Let us consider a subgroup̌H ⊂ Γ̌. If a periodic oscilla-
tion x̂(θ) satisfies

Ȟ =
{
γ̌ ∈ Γ̌ | γ̌{x̂(θ)} = {x̂(θ)}

}
(12)

for all the actions ˇγ ∈ Ȟ, the periodic oscillation has spatio-
temporal symmetry [5]. This relation shows that theȞ-
action preserves the trajectory of ˆx(θ) and an action ˇγ ∈ Ȟ
causes only a shiftk:

∀θ ∈ T1, γ̌x̂(θ) = x̂(θ − k). (13)

We represent the correspondence between ˇγ andk by a map
k = Θ(γ̌). Then, the kernel of the mapΘ is defined by

Ǩ �
{
γ̌ ∈ Ȟ | Θ(γ̌) = 0

}
. (14)

The kernelǨ derives a fixed-point subspace

Fix(Ǩ) � {x ∈ R6 | γ̌x = x, ∀γ̌ ∈ Ǩ} ⊂ R6. (15)

In this sence, the subgroup̌K represents spatial symmetry
of the three LC ladder circuit. In order to exist periodic
oscillations, it is necessary that thěH/Ǩ is isomorphic to
cyclic groupČm and that the dimension of Fix(Ǩ) is not
less than 2 [5].
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Table 2: Classification of periodic oscillations
Ȟ Ǩ label

Γ̌ Γ̌ o
Č3 × Ǐ Ě osce(c, i)

Č3 Č3 oscc(c)
Č3 Ě osce(c)
Γ̌(4) V̌ oscv(4)
Γ̌(4) J̌ oscj(4)
V̌ V̌ oscv(v)
V̌ Ě osce(v)
J̌ J̌ oscj(j)
J̌ Ě osce(j)
Ǐ Ě osce(i)
Ě Ě osce(e)

Table 3: Pattern of oscillations
label phase(ψabc) comments
osce(c, i) M3 ξ(θ) ξ(θ−k) ξ(θ−2k) ξ(θ) = −ξ(θ + π), k ∈ {+k3,−k3}
oscc(c) ξ(θ) ξ(θ) ξ(θ)
osce(c) ξ(θ) ξ(θ−k) ξ(θ−2k) k ∈ {+k3,−k3}
oscv(4) M1 η(θ) ξ(θ) ξ(θ) ξ(θ) = −ξ(θ+π), η(θ) = −η(θ+π)
oscj (4) M2 0 ξ(θ) −ξ(θ) ξ(θ) = −ξ(θ + π)
oscv(v) η(θ) ξ(θ) ξ(θ)
osce(v) η(θ) ξ(θ) ξ(θ + π) η(θ) = η(θ + π)
oscj (j) 0 ξ(θ) −ξ(θ)
osce(j) η(θ) ξ(θ) −ξ(θ+π) η(θ) = −η(θ + π)
osce(i) xabc(θ) = −xabc(θ+π)

Based on the above conditions, we can classify symmet-
ric periodic oscillations with respect to the subgroupsȞ
and Ǩ. The classified oscillations are listed in Tab.2 and
the patterns of the oscillations are shown in Tab.3, where
η, ξ : T1 �→ R1 are period 2π functions, k3 ≡ 2

3π, and M1,
M2 and M3 denotes typical highly symmetric oscillations.
Further, the lattice of symmetric periodic oscillation on 3
LC ladder circuit with respect tǒH is shown in Fig.4.

4.2. Higher symmetric oscillations

Let us consider the typical higher symmetric oscillations
M1, M2 and M3 shown in Figs. 5, 6 and 7, respectively. M1

and M2 are symmetric with respect to the reflection and the
inversion. The difference between M1 and M2 comes from
the spatial symmetry. The M1 corresponds to single-phase
oscillations in the three-phase circuit and the M2 is unsta-
ble. In the sence of ILM, the M1 and M2 correspond to ST
mode and Page mode, respectively[6]. The M3 is symmet-
ric with respect to the cyclic and inversion symmetry. The
k = +k3 andk = −k3 fix the propagating directions.

The symmetrical coordinates transform and the 0αβ
coordinates transform for the symmetric three-phase cir-
cuit correspond to the cyclic and the reflection symme-
tries, respectively. The M3 with +k3 and−k3 corresponds
to positive-phase-sequence and negative-phase-sequence
component, respectively. The M1 and M2 corresponds to
α component andβ component, respectively.
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Figure 4: Lattice of symmetric periodic oscillations.
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Figure 5: M1 has symmetry w.r.t. reflection.
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Figure 6: M2 has symmetry w.r.t. reflection.
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Figure 7: M3 has symmetry w.r.t. cyclic symmetry.

5. Almost periodic oscillation

5.1. Definition

We extend the method of the classification of the peri-
odic oscillations to almost periodic oscillations. We define
the almost periodic oscillation with normalized phaseθ by
x̂(θ) : T2 �→ R6. Then, a subgroup̌H is defined by

Ȟ =
{
γ̌ ∈ Γ̌ | γ̌{x̂(θ)} = {x̂(θ)}

}
(16)
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Figure 8: Lattice of almost periodic oscillations.

for all the action ˇγ ∈ Ȟ. TheȞ-action preserves the trajec-
tory of x̂(θ) and an action ˇγ causes only a shiftk ∈ T 2:

∀θ ∈ T2, γ̌x̂(θ) = x̂(θ − k). (17)

This relation defines a mapΘ(γ̌) : Ȟ �→ T2 and the kernel
of the mapΘ(γ̌) is defined by

Ǩ �
{
γ̌ ∈ Ȟ | Θ(γ̌) = o

}
. (18)

The subgroupǨ defines the fixed-point subspace Eq.(15).
The condition thatΘ is a group homomorphism is de-
scribed by

Ȟ/Ǩ � Čm1 × Čm2, (19)

wherem1 ∈ Z is a divisor ofm2. Additionally, Fix(Ǩ) is
not less than 4. Based on the conditions, we can illustrate
the lattice of symmetric almost periodic oscillations shown
in Fig.8. The higher symmetric waveforms beat(v,i) and
beat(c,i) which belongs tǒV × Ǐ andČ3× Ǐ respectively are
shown in Figs. 9 and 10.

In order to confirm oscillations in the three LC ladder
circuit, we calculate Poincare map of the cross section

Σ ≡
{
(ψα, uα, ψβ, uβ)|uα = 0, ψα > 0

}
, (20)

where the suffixesα andβ representsα andβ coordinate
in 0αβ coordinates. Although the original phase space is
6-dimension, assuming that 0-phase component is equal to
0 and fixing the HamiltonianH = 0.83, all the phase space
is projected into 2-dimensional plane. From the Poincare
map shown in Fig.11, we can confirm that periodic oscil-
lations M1, M2 and M3 exist and the almost periodic oscil-
lation beat(v,i) and beat (c,i) exist around the M1 and M3,
respectively. Almost all the phase space is covered by the
3 regions of beat(v,i) and 2 regions of beat(c,i).

5.2. Conclusion

We classify the periodic and almost periodic oscillations
in the three LC ladder circuit and derive the lattice of those
oscillations. As typical oscillations in the circuit, the higher
symmetric oscillations are confirmed by the observation of
the global phase space.
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Figure 9: Beat(v,I) has symmetry w.r.t. reflection.
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Figure 10: Beat(c,i) has symmetry w.r.t. cyclic symmetry.
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