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Abstract – Master-slave and mutual method for 

synchronization and amplification (attenuation) of chaos 
for two chaotic systems are presented. Numerical results 
are given for the synchronization of two Hindmarsh-Rose 
models for neurons. 
 
1. Introduction 

 
One of the possible applications of the synchronization is 
in the neuroscience because chaotic regimens have been 
observed experimentally in neurons. The time evolution of 
the neuronal activity is commonly describe by nonlinear 
diferential equations. The Hindmarsh-Rose model, one of 
the most popular neuron models exhibiting complicated 
dynamics, is a three-variable model for the bursting of 
neurons and a variant of the FitzHugh-Nagumo model [1]. 
Hindmarsh and Rose work was initiated by the discovery 
of a neuronal cell in the brain of pond snail Lymnae which, 
when it was depolarized by a short pulse, generated an 
action potential followed by slow depolarizing after-
potential. In invertebrates there are networks of neurons in 
which every neuron has reciprocal connections to other 
members. The Hindmarsh-Rose equations are developed 
to study synchronization of firing of two snail neurons 
without the need to use the full Hodgkin-Huxley equations. 
The natural choice was to use the FitzHugh-Nagumo 
model, which is more or less a simplification of the 
Hodgkin-Huxley equations. FitzHugh and Nagumo 
observed independently that in the Hodgkin-Huxley 
equations, the membrane potential as well as sodium 
activation evolves on similar time-scales during an action 
potential, while sodium inactivation and potassium 
activation change on similar, although slower time scales. 
Starting with the two-variable subsystem which describes 
the action potential, they add a third variable which is 
governed by a simple linear equation, and note that the 
resulting autonomous system admits aperiodic behavior. 
Then the complicated current-voltage relationship of the 
conductance models has been replaced by polynomials in 
the dynamical variables. 
The dynamical behavior of the Hindmarsh–Rose model 
has been intensively investigated in the last two decades. 
In recent years, more and more authors have devoted to 
investigating the synchronization of the Hindmarsh–Rose 
models from numerical simulation studies [2]. Recently 
Wu et al. [3] investigated the issues of control and 

synchronization of the chaotic Hindmarsh–Rose models 
via impulsive control with varying impulsive intervals and 
Ma at al. [4] the role of noise in the biological and 
neuronal system because the neurons often are sensitive to 
the external noise. Jackson and Grosu [5], [6] developed a 
powerful method of control: the open-plus-closed-loop 
(OPCL) method. This method gives precise driving for 
any continuous system in order to reach any desired 
dynamics and it has been applied to synchronization of 
two identical systems by Lerescu et al. [7], and Oancea [8]. 
More than this it can be extends to 3 systems and 4 
systems [9], [10]. 
 The main objective of this paper is to investigate the 
synchronization and amplification (attenuation) of chaos 
for Hindmarsh–Rose models of neurons. 

 
2. Master-slave Synchronization   
Let’s consider a general master system: 
dX/dt= F(X); X∈Rn     (1) 
then the slave system: 
dx/dt= F(x) +D(x,X)    (2) 
where  D(x,X)=(A - ∂ F/ ∂ x|x=X)(x – X)-

1/2( F/2∂ ∂ x2)( x – X)2- 1/6( F/∂ x
3∂ 3)( x – X)3 +… 

assures x(t)→X(t) for any x(0)-X(0)  small enough.  
A is a constant Hurwitz matrix with negative real part 
eigenvalues. The matrix A should be chosen in such a 
manner in order that the coupling to be as simple as 
possible. 
  
3. Mutual Synchronization  
Let’s consider two identical general oscillators: 
dx/dt=F(x); dy/dt=F(y);                                                (3) 
The coupled systems are: 
dx/dt=F(x)+u(x,y);   dy/dt=F(y)+u(x,y);         (4) 
where  u(x,y)=(A-dF(s)/ds)*(x-y)/2 , s=(x+y)/2 and A is 
the Hurwitz matrix.  
The present method has been applied to all systems from 
the Sprott collection [11]. 
  
4. Amplification of chaos 
Grosu et al. [12] designed the coupling for stable 
synchronization and antisynchronization in chaotic 
systems under parameter mismatch.   
The driver is: 
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dy/dt= F(y)+ΔF(y);     (5) 
y R∈ n , unde ΔF(y) contains mismatch parameters. 
The driven system is given by: 
dx/dt= F(x) +D(x,αy)    (6) 
where  D(x,αy)=α dy/dt –F(αy)- (A -J F(αy)(x – αy) (7) 
J being the Iacobian and A the arbitrary constant Hurwitz 
matrix. 

 
5. Numerical results 
The Hindmarsh-Rose model has three variables X1, X2, X3, 
satisfying the following polynomial equations: 
dX1/dt =X2-aX1

3 +bX1
2-X3+I;  

dX2/dt=c-dX1
2 –X2 ;    (8) 

dX3/dt =r [s(X1 -e)-X3]  
Here X1 is membrane action potential, X2 is potential of 
the ionic channels subserving accommodation, X3 the 
slow adaptation current which moves the voltage in and 
out of the inherent bistable regime and which terminates 
spike discharges, I, external direct current and a, b, c, d, e, 
r, s are constants.  
Depending on the values of above parameters neurons can 
be in a steady state, they can generate a periodic low-
frequency repetitive firing, chaotic bursts, or high 
frequency discharges of action potentials.  Just as 
proposed in [1], we consider the system (8) with the 
constant values: 
a=1; b=3; c=1; d=5; I=3.25; e=-(1+ 5 )/2; r=0.005; s=4 
The Hindmarsh-Rose system is chaotic (Fig. 1): 

 
Fig.1. Phase portrait for Hindmarsh-Rose system with 
initial conditions (X1(0) = -1; X2(0 )= -0.1 X3(0)= -0.01) 
 
We can choose the Hurvitz matrix having a two constant 
parameters and the Routh-Hurwitz conditions give for 
these parameters:  
0.02>0.05(p1+p2)  
0.025>1.005p1+p2  
The slave system (of the master system (8)) with p1=p2 = -
10 is: 
dx1/dt=x2-x1

3+3x1
2-x3+3.25+(-10+3X1

2 -6X1)(x1-X1) ;  
dx2/dt=1-5x1

2 –x2+(-10+10X1))(x1-X1); 
dx3/dt =0.005[4(x1 +1.618)-x3]                (9)
  

Fig.2 and 3 presents the fast synchronization of two 
Hindmarsh-Rose systems for p1=p2 = -10] 

Fig.2 X1(t)-green x1(t)-black [X1(0) = -1; X2(0) = -0.1 X3(0) 
= -0.01; x1(0) =1; x2(0) = 0.1 x3(0) = 0.01]  

 
Fig.3. X2(t)-red, x2(t)-black [X1(0) = -1; X2(0) = -0.1 X3(0) 
= -0.01; x1(0) =1; x2(0) = 0.1 x3(0) = 0.01; p1=p2 = -10] 
 

 
Fig.4. Synchronization errors between (8) and (9) [X1(t)- 
x1(t), green ; X2(t)- x2(t), red ; X3(t)- x3(t), black] and 
p1=p2=-10; (X1(0)=-1; X2(0)=-0.1; X3(0)=-0.01; x1=1; 
x2=0.1; x3=0.01) 
The mutual synchronization systems are: 
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dx1/dt =x2-x1
3 +3x1

2-x3+3.25+[-10+3(x1+y1)2/4-
6(x1+y1)/2] (x1-y1)/2;  
dx2/dt=1-5x1

2 –x2+[-10+10(x1+y1)/2] (x1-y1)/2 ; 
dx3/dt =0.005 [4(x1+1.618)-x3]  
dy1/dt =y2-y1

3 +3y1
2-y3+3.25 +[-10+3(x1+y1)2/4-

6(x1+y1)/2] (-x1 +y1)/2;  
dy2/dt=1-5y1

2 –y2+[-10+10(x1+y1)/2] (-x1+y1)/2 ; 
dy3/dt =0.005 [4(y1+1.618)-y3] 
 
Numerical results for the mutual synchronization are 
given in Fig.5, 6 and 7. 

 
Fig.5 x1(t)-green, y1(t)-black [x1(0) = -1; x2(0) = -0.1 x3(0) = 
-0.01; y1(0) =1; y2(0) = 0.1 y3(0) = 0.01; p1=p2 = -10] 

 
Fig.6 x2(t)-red,  y2(t)-black [x1(0) = -1; x2(0) = -0.1 x3(0) = -
0.01; y1(0) =1; y2(0) = 0.1 y3(0) = 0.01; p1=p2 = -10] 
 

 
Fig. 7 Synchronization errors [(x1(t) – y1(t), green ; x2(t) – 
y2(t), red ; x3(t) - y3(t), black)] oscillators [x1(0) = -1;x2(0) 
= -0.1; x3(0) = -0.01; y1(0) = 1; y2(0) = 0.1; y3(0) = 0.01; 
p1=p2= -10] 
The driver system 5 and the driven system (6) with α=-2 
are:  
dy1/dt =y2-y1

3 +3y1
2-y3+3.25-0.5 y1+0.1y2-0.1y3;  

dy2/dt=1-5y1
2 –y2 ; 

dy3/dt =0.005 [4(y1+1.618)-y3]  
dx1/dt =x2-x1

3 +3x1
2 –x3 +3.25+ y1

3-0.2 y2 +0.2y3-6 y1
3-18 

y1
2+[-10-12 y1

2-12y1 ](x1+2y1) 
dx2/dt=1-5x1

2 –x2 +30 y1
2+[-10-20y1] (x1+2y1) ; 

dx3/dt =0.005 [4(x1+1.618)-x3] 
 
Amplification of chaos for Hindmarsh-Rose system is 
given in figures 8-11. 

 
Fig. 8 2y1(t)-green, x1(t)-black, for α=-2; (y1(0)=0.001; 
y2(0)= 0.001; y3(0)= 0.001; x1(0)=- 0.001; x2(0)= 0.001; 
x3(0)= 0.001) 
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Fig. 9 2y2(t)-red, x2(t)-black, for α=-2; (y1(0)=0.001; 
y2(0)= 0.001; y3(0)= 0.001; x1(0)=- 0.001; x2(0)= 0.001; 
x3(0)= 0.001) 

 
Fig. 10 2y3(t)-blue x3(t)-black, for α=-2; (y1(0)=0.001; 
y2(0)= 0.001; y3(0)= 0.001; x1(0)=- 0.001; x2(0)= 0.001; 
x3(0)= 0.001) 

 
Fig. 11 Phase portrait of (y 1, y2,)-black and (x 1, x2)-red, for 
p=-10 and α=-2; (y1(0)=0.001; y2(0)= 0.001; y3(0)= 0.001; 
x1(0)=- 0.001; x2(0)= 0.001; x3(0)= 0.001) 

 

 6. Conclusions 
In this paper we applied the master-slave, mutual 

synchronization and amplification of chaos methods to the 
chaotic systems that are known as Hindmarsh-Rose 
oscillators. The transient time until synchronization 
depends on initial conditions of two systems and on the 
values of negative part of eigenvalues. Generally speaking, 
synchronization properties of dynamical neural networks 
essentially depend on the coupling configuration, the 
number of cells, and the type of coupling. 
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