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Abstract—Quantum computation algorithms indicate
possibility that non-deterministic polynomial time prob-
lems can be solved much faster than classical methods.
Farhi et al. have proposed an adiabatic quantum compu-
tation (AQC) for solving the three-satisfiability (3-SAT)
problem. We have proposed a neuromorphic quantum com-
putation algorithm based on AQC, in which an analogy to
an artificial neural network (ANN) is considered in order
to design a Hamiltonian. However, in the neuromorphic
AQC, the relation between its computation time and suc-
cess rate has not been clear. In this paper, we study residual
energy and the probability of correct answers as a function
of computation time. The residual energy behaves as ex-
pected from the adiabatic theorem. On the other hand, the
success rate strongly depends on energy level crossings of
excited states during Hamiltonian evolution. The results
indicate that computation time must be adjusted according
to a target problem.

1. Introduction

The number of computational steps increases exponen-
tially when we try to solve a combinational optimization
problem. If the size of a target problem is large, we can-
not solve it in a reasonable computation time. It is expected
that quantum computation can be viewed as a new informa-
tion processing for solving such problems efficiently. Farhi
et al. [1]-[3] have proposed an adiabatic quantum com-
putation (AQC) for solving the three-satisfiability (3-SAT)
problem. A database search can be done by using AQC
in steps proportional toO(

√
N) [3], because AQC has an

analog analogy to Grover’s algorithm [4], [5]. In AQC,
a quantum computation is done by changing a Hamilto-
nian enough slowly for fulfilling the requirement of the
adiabatic theorem [6]. The quantum state stays always in
each ground state during Hamiltonian evolution, so that
decoherence effect is not severe in comparison with other
quantum computation algorithms. The method of design-
ing a final Hamiltonian for the original AQC has not been
known except a few problems. In order to give a guideline
to obtain a Hamiltonian, we have proposed a neuromor-
phic adiabatic quantum computation (neuromorphic AQC),

in which an analogy to an artificial neural network (ANN
[7]) is considered[8], [9]. The final Hamiltonian matrix
is composed of diagonal and non-zero non-diagonal ele-
ments in which interactions between neurons are converted
to interactions between qubits. This leads that a final quan-
tum state is given as a superposition of solution and non-
solution states. To evaluate the performance of neuromor-
phic AQC, it is necessary to study not only the residual
energy but also the probability for finding correct answers.
In this paper, first we study the relation between the resid-
ual energy and the computation time in neuromorphic AQC
by numerical simulations. Next, the probability for finding
correct answers is studied to clarify the performance more
precisely.

2. Adiabatic Quantum Computation with Neuron-like
Interconnections

2.1. Adiabatic Quantum Computation

The Hamiltonian of the adiabatic quantum computation
changes as time goes on from an initial HamiltonianHI

whose ground state is given as the superposition of all
states, to a final HamiltonianHF whose ground state in-
cludes solutions for a given problem. (see [1], [8] for de-
tails.) The evolution of the Hamiltonian is given as

H(t) =
(
1− t

T

)
HI +

t
T

HF , (1)

HI =

2n−1∑
i=0

σ(i)
x , (2)

where n and σ(i)
x are the number of qubits and thex-

component of the Pauli spin matrix acting on thei-th qubit,
respectively.T denotes the computation time in which the
Hamiltonian evolves. The initial quantum state is set to the
superposition of all states and is given as

|ψ(0)⟩ = 1
√

2n

2n−1∑
i=0

|i⟩ , (3)

where|i⟩ ≡ |xn⟩ · · · |xi⟩ · · · |x2⟩ |x1⟩ ≡ |xn · · · xi · · · x2x1⟩ and
each qubit|xi⟩ takes|0⟩ or |1⟩, exclusively. We can con-
trol the speed of state changes to be suitable for finding
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solutions. If a sufficiently largeT is chosen, the evolution
becomes adiabatic. The adiabatic theorem [6] tells that a
quantum state remains close to each ground state. There-
fore, solutions can be found in the final state|ψ(T)⟩. How-
ever, if there is any degeneracy or level crossing during the
Hamiltonian evolution, the quantum state may not stay in
a ground state. These behaviors depend on a Hamiltonian
strongly.

2.2. Neuromorphic Method for Designing Final Hamil-
tonians

The method of designing a final HamiltonianHF has not
been known for a general case. First of all, we consider
a Hopfield neural network (HNN) [10]. The energy func-
tion E is defined for an HNN because it has symmetrical
synaptic connections. It is given as

E = −1
2

∑
i, j

wi j oio j , (4)

whereoi andwi j (= w ji ) are the output of thei-th neuron and
the synaptic weight between thei-th and thej-th neurons,
respectively. The network state changes to lower energy
states as time goes on. It has been known that an HNN can
be applied to a combinatorial optimization problem [10].
If we can obtain the synaptic weights by comparing the
energy function with the cost or penalty function of an op-
timization problem, the HNN can work for solving such
a problem. However, if the network is trapped at a local
minimum, its final state does not correspond to a solution.
If we know a method to convert a synaptic weight matrix
W to a final HamiltonianHF , AQC can be applied to an
optimization problem in which quantum dynamics must be
helpful for avoiding the trap at local minima.

Table 1: Relation between Hamiltonian and synaptic
weight

Hamiltonian Ground Measured Interaction Synaptic
State State Weight

λ 0 0 0
0 λ A 0
0 A λ 0
0 0 0 λ

 |01⟩ − |10⟩ |01⟩ , |10⟩ inhibitory wi j < 0


λ 0 0 A
0 λ 0 0
0 0 λ 0
A 0 0 λ

 |00⟩ − |11⟩ |00⟩ , |11⟩ excitatory wi j > 0

Table I describes how to design a final Hamiltonian [8],
[9]. As for the upper Hamiltonian, its ground state is com-
posed of|01⟩ and |10⟩ states due to the existence of non-
diagonal elementsA. When the quantum system is in a
ground state, possible states to be measured is|01⟩ or |10⟩,
exclusively. It can be said that the interaction of two neu-
rons is inhibitory if we consider the analogy with an ANN
model. Also, excitatory interaction is possible with the
lower Hamiltonian. In order to relate a synaptic weight
with a qubit interaction, the upper (lower) Hamiltonian is

used for a negative (positive) synaptic weight. The sum of
the upper and lower Hamiltonians reflecting a synaptic ma-
trix W is employed as a final Hamiltonian of neuromorphic
AQC. Please note that these Hamiltonians can be replaced
by some suitable ones arbitrary. Both parametersλ andA
are constants, and their magnitudes should reflect the value
of a synaptic weightwi j . In the followings, however, we do
not pay much attention to the magnitude of there parame-
ters because the synaptic weights in this paper take values 0
or -1 only. For example, suppose we have a synaptic weight
matrix

W1 =


0 −1 −1 1
−1 0 −1 −1
−1 −1 0 −1

1 −1 −1 0

 . (5)

This matrix represents one excitatory and five inhibitory in-
teractions. Then a final HamiltonianHF1 is given according
to the rules described in Table I as
HF1 = 

λ 0 0 0 0 0 0 0 0 A 0 0 0 0 0 0
0 λ A 0 A 0 0 0 0 0 0 0 0 0 0 0
0 A λ 0 A 0 0 0 A 0 0 A 0 0 0 0
0 0 0 λ 0 A A 0 0 A 0 0 0 0 0 0
0 A A 0 λ 0 0 0 A 0 0 0 0 A 0 0
0 0 0 A 0 λ A 0 0 A 0 0 0 0 0 0
0 0 0 A 0 A λ 0 0 0 A 0 A 0 0 A
0 0 0 0 0 0 0 λ 0 0 0 A 0 A 0 0
0 0 A 0 A 0 0 0 λ 0 0 0 0 0 0 0
A 0 0 A 0 A 0 0 0 λ A 0 A 0 0 0
0 0 0 0 0 0 A 0 0 A λ 0 A 0 0 0
0 0 A 0 0 0 0 A 0 0 0 λ 0 A A 0
0 0 0 0 0 0 A 0 0 A A 0 λ 0 0 0
0 0 0 0 A 0 0 A 0 0 0 A 0 λ A 0
0 0 0 0 0 0 0 0 0 0 0 A 0 A λ 0
0 0 0 0 0 0 A 0 0 0 0 0 0 0 0 λ



, (6)

whereλ andA are arbitrary constants.

3. Simulation Results

3.1. Residual Energy

For discussing the performance of the neuromorphic
AQC, we investigate residual energy∆E. It is defined as
the energy difference between the nominal ground energy
calculated from a final Hamiltonian and the actual energy
after the state evolution, and given as

∆E = ⟨ψ∗(T) | HF | ψ∗(T)⟩ − ⟨ψ(T) | HF | ψ(T)⟩ , (7)

where|ψ∗(T)⟩ represents a theoretical final state. If there
is no degeneracy in the ground energy level ofHF , |ψ∗(T)⟩
is identical with |ψg(HF)⟩, which corresponds to the sin-
gle ground state obtained analytically. On the other hand,
for the caseHF has degenerated ground states, we de-
fine |ψ∗(T)⟩ as a liner combination of the ground states
|ψi

g(HF)⟩, namely

|ψ∗(T)⟩ =
∑

i

Ci
g |ψi

g(HF)⟩ . (8)

Ci
g is the probability amplitude of the ground state|ψi

g(HF)⟩
wherei denotes the index of the degenerated ground states.
The normalization condition∑

i

| Ci
g |2= 1 (9)
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gives an obvious result

⟨ψ∗(T) | HF | ψ∗(T)⟩ = ⟨ψi
g(HF) | HF | ψi

g(HF)⟩ (10)

for all i. Therefore,∆E does not depend on the choice of
Ci

gs.

Figure 1: Energy change of a 4-qubit system with the
Hamiltonian HF1. Red line denotes each instantaneous
ground state.

Figure 2: Change of the residual energy∆E for three dif-
ferent Hamiltonians as a function of the computation time
T. (H:W1,◦:W2,+:W3).

If there is no degeneracy or level crossing in the ground
state, the relation

∆E ∝ O

(
1

T2

)
(11)

in the longT limit should be found as expected from the
adiabatic theorem. Figure 1 shows the energy change of
a 4-qubit system during the Hamiltonian evolution from
HI to HF1, where HF1 is obtained fromW1. It can be
seen that there is no degeneracy or level crossing, so that
an adiabatic change is realized. Also, the residual energy
showsO(1/T2) dependence as shown in Fig.2. It agrees
well with the results for quantum annealing reported by

S. Suzuki[11]. Also, the results for additional two 3-qubit
systems have been shown in the figure. Their qubit interac-
tions are obtained from synaptic weight matrices

W2 =

 0 −1 1
−1 0 −1

1 −1 0

 , (12)

and

W3 =

 0 −1 −1
−1 0 −1
−1 −1 0

 , (13)

respectively.

3.2. Probability of Correct Answers

In the previous section, it has been confirmed that the
neuromorphic AQC shows a similar behavior as the origi-
nal AQC in terms of the residual energy. The investigation
only of the residual energy is not sufficient for performance
evaluation of the neuromorphic AQC because both solution
and error states are often mixed together in a ground state
of HF . Namely, one of ground states att = T is given as

|ψi
g(HF)⟩ =

∑
j∈Ω

Ci
j | j⟩ +

∑
k<Ω

Ci
k |k⟩ , (14)

whereΩ denotes a set of solution states. In general, this
mixing is not avoidable because a final Hamiltonian is ob-
tained from qubit-qubit interactions. Therefore, it is nec-
essary to evaluate successful rates as a function of com-
putaiton timeT apart from the residual energy.

First, we define the probability difference as

∆Pg ≡ 1− P∗

= 1− | ⟨ψ(T) | ψ∗⟩ |2

= 1−
∑

i

| Ci
g |2| ⟨ψ(T) | ψi

g(HF)⟩ |2 (15)

where P∗ is the actual probability of the quantum state
|ψ(T)⟩ found in the merged ground state|ψ∗(T)⟩ in Eq.(8).
Figure 3(a) shows the change of∆Pg for the final Hamil-
tonians HF1, HF2 and HF3. When we assume∆Pg ∝
O(1/Tζ), ζ ∼ 2 is obtained again. However, both solu-
tion and error states are mixed together in the final quantum
state|ψ(T)⟩. We should investigate probabilities of solution
states, and define a probability difference given as

∆Ps ≡ |
∑
j∈Ω

P∗j − P j |

= ||
∑
j∈Ω
⟨ j | ψ∗(T)⟩ |2 − |

∑
j∈Ω
⟨ j | ψ(T)⟩ |2|,

(16)

whereP j is the actual probability of the solution state| j⟩
found in the final quantum state|ψ(T)⟩, andP∗j is the the-
oretical probability given from the final HamiltonianHF .
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Figure 3(b) shows the change of∆Ps for the final Hamil-
toniansHF1, HF2 andHF3. ζ ∼ 2 is obtained forW1 and
W3. On the other hand,ζ ∼ 1 is obtained forW2 whenT
is large enough. Therefore, we can suppose thatζ depends
on a final HamiltonianHF . This difference is related to
the behavior of excited states. ForHF2 the first and second
excited states are exchanged during Hamiltonian evolution
as shown in Fig.4. On the other hand, forHF1 and HF3

such exchange is not found. Not large but finite population
changes in these excited states seem to affect to the perfor-
mance significantly.

Figure 3: The probability differences∆Pg (a) and
∆Ps (b) as a function of the computation timeT.
(H:W1,◦:W2,+:W3).

4. Conclusion

In order to evaluate the performance of AQC with
neuron-like interactions (neuromorphic AQC), we have
studied the residual energy and the probability of correct
answers as a function of computation timeT. Unlike the
original AQC, the final state is composed of solution and
error states in the neuromorphic AQC. Therefore, the per-
formance of neuromorphic AQC can not be evaluated only
by a relation between residual energy and the computa-
tion time. It has been confirmed that the residual energy
change is given asO(1/T2), and the∆Ps change is given as

Figure 4: Energy change of a 3-qubit system with the
HamiltonianHF2. Red, blue and green curves represent
the ground, the first excited and the second excited states,
respectively.

O(1/T2) or O(1/T). The success rate depends on the char-
acteristics or structure of a final Hamiltonian. The results
indicate that computation time must be adjusted according
to a target problem.
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