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Abstract—Quantum computation algorithms indicatein which an analogy to an artificial neural network (ANN
possibility that non-deterministic polynomial time prob-[7]) is considered[8], [9]. The final Hamiltonian matrix
lems can be solved much faster than classical methods.composed of diagonal and non-zero non-diagonal ele-
Farhiet al. have proposed an adiabatic quantum compuments in which interactions between neurons are converted
tation (AQC) for solving the three-satisfiability (3-SAT) to interactions between qubits. This leads that a final quan-
problem. We have proposed a neuromorphic quantum cormum state is given as a superposition of solution and non-
putation algorithm based on AQC, in which an analogy teolution states. To evaluate the performance of neuromor-
an artificial neural network (ANN) is considered in ordemphic AQC, it is necessary to study not only the residual
to design a Hamiltonian. However, in the neuromorphienergy but also the probability for finding correct answers.
AQC, the relation between its computation time and sudn this paper, first we study the relation between the resid-
cess rate has not been clear. In this paper, we study residual energy and the computation time in neuromorphic AQC
energy and the probability of correct answers as a functidsy numerical simulations. Next, the probability for finding
of computation time. The residual energy behaves as egerrect answers is studied to clarify the performance more
pected from the adiabatic theorem. On the other hand, tipeecisely.
success rate strongly depends on energy level crossings of
excited states during Hamiltonian evolution. The results = agiapatic Quantum Computation with Neuron-like
indicate that computation time must be adjusted according |nterconnections
to a target problem.

2.1. Adiabatic Quantum Computation

1. Introduction The Hamiltonian of the adiabatic quantum computation
changes as time goes on from an initial Hamiltontdn

The number of computational steps increases exponeffhose ground state is given as the superposition of all

tially when we try to solve a combinational optimizationstates, to a final Hamiltoniahlr whose ground state in-

problem. If the size of a target problem is large, we cancludes solutions for a given problem. (see [1], [8] for de-

not solve it in a reasonable computation time. Itis expectd@ils.) The evolution of the Hamiltonian is given as

that quantum computation can be viewed as a new informa-

tion processing for solving such problenBaently. Farhi

et al. [1]-[3] have proposed an adiabatic quantum com- on_q

putation (AQC) for solving the three-satisfiability (3-SAT) H, = Z o0, @)

problem. A database search can be done by using AQC —

in steps proportional t&( VN) [3], because AQC has an wheren and a-E(') are the number of qubits and the

analog analogy to Grover’s algorithm [4], [5]. In AQC, o . : .
a quantum computation is done by changing a Ham"toqompor_lent of the Pauli spin matrix ag:tmg_on t_Irte qu't’

. S ; respectively.T denotes the computation time in which the
nian enough slowly for fulfilling the requirement of the

adiabatic theorem [6]. The quantum state stays always l}llamiltonig_n evolves. The initiall qu_antum state is set to the
each ground state during Hamiltonian evolution, so thastuperposmon of all states and is given as
decoherenceftect is not severe in comparison with other 1 %t

quantum computation algorithms. The method of design- ly(0)) = 7 Z i), 3)

ing a final Hamiltonian for the original AQC has not been i=0

known except a few problems. In order to give a guidelinghereli) = [Xp) -« [X) -+ [X2) [X1) = [Xn -+ X -+ - XoXg) and

to obtain a Hamiltonian, we have proposed a neuromoeach qubitx ) takes|O) or |1), exclusively. We can con-
phic adiabatic quantum computation (neuromorphic AQC}rol the speed of state changes to be suitable for finding

H(t):(l—%)H. +%HF, (1)
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solutions. If a stficiently largeT is chosen, the evolution used for a negative (positive) synaptic weight. The sum of
becomes adiabatic. The adiabatic theorem [6] tells thatthe upper and lower Hamiltonians reflecting a synaptic ma-
guantum state remains close to each ground state. Thenéx W is employed as a final Hamiltonian of neuromorphic
fore, solutions can be found in the final stat€T)). How- AQC. Please note that these Hamiltonians can be replaced
ever, if there is any degeneracy or level crossing during tHey some suitable ones arbitrary. Both parameteasd A
Hamiltonian evolution, the quantum state may not stay iare constants, and their magnitudes should reflect the value
a ground state. These behaviors depend on a Hamiltoniaha synaptic weightv;j. In the followings, however, we do
strongly. not pay much attention to the magnitude of there parame-
ters because the synaptic weights in this paper take values 0
2.2. Neuromorphic Method for Designing Final Hamil-  or -1 only. For example, suppose we have a synaptic weight

tonians matrix
The method of designing a final Hamiltoni&i has not 0 -1 -1 1
been known for a general case. First of all, we consider W = -1 0 -1 -1 (5)
a Hopfield neural network (HNN) [10]. The energy func- -1 -1 0 -1¢F
tion E is defined for an HNN because it has symmetrical 1 -1-1 0
synaptic connections. Itis given as This matrix represents one excitatory and five inhibitory in-
1 teractions. Then a final Hamiltoniay is given according
E=_= ZWijOina (4) tothe rules described in Table I as
2 i, HE1 =
A 0 0 0 0 0 0 0 0 A 0 0 0 0 0 0
whereo; andwij (= wj;) are the output of thieth neuron and 6 A 1 0 A0 0 0 A0 o AT oo o
the synaptic weight between ti¢h and thej-th neurons, S-S S S SR S S S
respectively. The network state changes to lower energy S 0 6 A 0 A 1 0 0 o A0 Ao o A
states as time goes on. It has been knownthatanHNNcan |5 ¢ 2 o & o & 5 5 o 0 5 5 5 % %S|e®
be applied to a combinatorial optimization problem [10]. O S S S A AR SR
If we can obtain the synaptic weights by comparing the 6 0 9o 0 0 9 A 0 o A Ao 1 0 5 0
energy function with the cost or penalty function of an op- S 0 6 0 5 %% % %A A d o
0 0 0 0 0 0 A 0 0 0 0 0 0 0 0 2

timization problem, the HNN can work for solving such

a problem. However, if the network is trapped at a locaWwherea andA are arbitrary constants.
minimum, its final state does not correspond to a solution.

If we know a method to convert a synaptic weight matrixg simulation Results

W to a final HamiltonianHg, AQC can be applied to an

optimization problem in which quantum dynamics must b&.1. Residual Energy

helpful for avoiding the trap at local minima. For discussing the performance of the neuromorphic

AQC, we investigate residual energye. It is defined as
Table 1: Relation between Hamiltonian and synaptithe energy dtference between the nominal ground energy

weight calculated from a final Hamiltonian and the actual energy
Hamiltonian Ground Measured Interaction Synaptic after the State eVOIUt'On, and g'Ven as
State State Weight
[ o v A y AE = " (T) [ He [y (T)) = (T) [ He 1¢(T)),  (7)
0 A 2 0 |01) - [10) 101),]10y inhibitory Wij <0
o 0 o where|y*(T)) represents a theoretical final state. If there
° 0 A is no degeneracy in the ground energy leveHgf [4*(T))
0 a 0
0 0 a

—_—
>0 o0~

J oo OO ey >0 is identical with|y4(Hg)), which corresponds to the sin-

gle ground state obtained analytically. On the other hand,
for the caseHg has degenerated ground states, we de-
fine [¢*(T)) as a liner combination of the ground states

Table | describes how to design a final Hamiltonian [8] "
[9]. As for the upper Hamiltonian, its ground state is coml‘l’g(HF»’ namely
posed ofl01) and|10) states due to the existence of non- ; _ i
diagonal elementé&. When the guantum system is in a (M) = ch Wo(HED - ®)
ground state, possible states to be measurf@d)jsor |10), . 3 _ )
exclusively. It can be said that the interaction of two neuCy is the probability amplitude of the ground statg(Hr))
rons is inhibitory if we consider the analogy with an ANNWherei denotes the index of the degenerated ground states.
model. Also, excitatory interaction is possible with thel he normalization condition
lower Hamiltonian. In order to relate a synaptic weight Z | Cg P=1 Q)

with a qubit interaction, the upper (lower) Hamiltonian is i
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gives an obvious result S. Suzuki[11]. Also, the results for additional two 3-qubit
) i systems have been shown in the figure. Their qubit interac-
W' (T) I HE 1¢*(T)) = (Wg(He) | He [ ¥g(HE))  (10)  tions are obtained from synaptic weight matrices

for all i. Therefore AE does not depend on the choice of 0O -1 1
Cys- W,={ -1 0 -1 |, (12)
1 -1 0
4 and
z 0 -1 -1
e e ——— W;=| -1 0 -1 |, (13)
rrrrrrrrrrrrr ‘ -1 -1 o0
2 Y 05 respectively.
0|
-6 o5 3.2. Probability of Correct Answers
-8 % 3 In the previous section, it has been confirmed that the
o - ‘ ‘ x 1o’ neuromorphic AQC shows a similar behavior as the origi-
0 05 ! 15 2 25 3 nal AQC in terms of the residual energy. The investigation

only of the residual energy is notféicient for performance
gvaluation of the neuromorphic AQC because both solution
gnd error states are often mixed together in a ground state
of Hg. Namely, one of ground statestat T is given as

Figure 1: Energy change of a 4-qubit system with th
Hamiltonian Hg;. Red line denotes each instantaneou
ground state.

wy(He) = > Clip + Y ClIk), (14)
jeQ kgQ
b whereQ denotes a set of solution states. In general, this
LT Ty o mixing is not avoidable because a final Hamiltonian is ob-
" T %%% ¥++ v Y VT . | tained from qubit-qubit interactions. Therefore, it is nec-
~ o, oy "V.‘ essary to evaluate successful rates as a function of com-
& 0! "Q% T, i putaiton timeT apart from the residual energy.
% o Ty, 'v,' First, we define the probability fierence as
< 0t Ctb% . . i
3 v 5 +++*L\F APg = 1-F
= :
Eo | O:Ws %% Vo = -1y P
e = 1= > ICHPIW(T) lygHe) P (15)
10 \ . . ) ) 0. -
" 10° 10’ 1o 10 o 107 1P I
T where P* is the actual probability of the quantum state

) ] ] l/(T)) found in the merged ground std¢e (T)) in Eq.(8).
Figure 2: Change of the residual enery for three dif- Figure 3(a) shows the change &P, for the final Hamil-
ferent Hamiltonians as a function of the computation tim?oniansle, He, and Hes.  When we assum@Py o
T. (V:Wp,0:Wa,+:Wa). O(1/T9), ¢ ~ 2 is obtained again. However, both solu-

. o tion and error states are mixed together in the final quantum
If there is no degeneracy or level crossing in the grounétatelzp(T)). We should investigate probabilities of solution
state, the relation states, and define a probabilityffdirence given as

1
AE « O = 11
(Tz) - APs = | Y P -P
in the longT limit should be found as expected from the jeQ
adiabatic theorem. Figure 1 shows the energy change of = | Z Gl M) P - Z G (™) P,
a 4-qubit system during the Hamiltonian evolution from =) =)
H, to Hg1, whereHg, is obtained fromW;. It can be (16)

seen that there is no degeneracy or level crossing, so that

an adiabatic change is realized. Also, the residual energghereP; is the actual probability of the solution staj¢
showsO(1/T?) dependence as shown in Fig.2. It agreefound in the final quantum stat¢(T)), and P’j‘ is the the-
well with the results for quantum annealing reported byretical probability given from the final Hamiltoniarr.
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Figure 3(b) shows the change &P for the final Hamil-
toniansHg1, Hgz andHgs. ¢ ~ 2 is obtained foW; and

a
Ws. On the other hand; ~ 1 is obtained foM, whenT zz ®
is large enough. Therefore, we can supposeditipends oal T
on a final HamiltonianHg. This diference is related to T
the behavior of excited states. Hag, the first and second § o
excited states are exchanged during Hamiltonian evolution 5

as shown in Fig.4. On the other hand, fdg; and Hgs
such exchange is not found. Not large but finite population
changes in these excited states seenttexato the perfor-
mance significantly.

|
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Oog”m Ty, .\ v, (@ Figure 4: Energy change of a 3-qubit system with the
g0’ %DQ% T ‘g HamiltonianHg,. Red, blue and green curves represent
= Ton 4 v, the ground, the first excited and the second excited states,
0T Ty, Ty A respectively.

o o 4,
o Ooq% +,
% U _ . O(1/T?) or O(1/T). The success rate depends on the char-
Z (v) jw’ %%, *. acteristics or structure of a final Hamiltonian. The results
E 10 T jo S indicate that computation time must be adjusted according
° i %o, to a target problem.
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