
Phase ontrol of oupled osillators using multilinear feedbakTakeshi Kano and Shuihi KinoshitaGraduate Shool of Frontier Biosienes, Osaka University1-3 Yamadaoka, Suita, Osaka, 565-0871 JapanEmail: takesik�fbs.osaka-u.a.jp, skino�fbs.osaka-u.a.jpAbstrat�Controlling dynamis of oupled osillatorsis now beoming a hallenging topi. In the present pa-per, we propose a method to ontrol the phase relation-ship among oupled osillators using multi-linear feed-bak, whih is extended from our previous theory suh thatthe delays and strengths of the feedbak signals beomenode-dependent. We show by a simulation that variousphase relationships are obtained suessfully using the pro-posed method.1. IntrodutionSynhronization of mutually interating elements ex-hibiting regular rhythms is a well-known phenomenon innature [1℄. Nowadays, ontrolling dynamis of suh syn-hronization phenomena is beoming a hallenging topi.For example, eletrial stimulation is known as a therapyto several neural diseases suh as Parkinson's disease andessential tremor, where the stimulation desynhronizes thepathologially-synhronized neurons [2℄. Another exam-ple is found in the �eld of robotis. Sine loomotion ofa robot requires yli ations to be oordinated, varioustehniques to stabilize a desired phase relationship amongyli units have been developed [3℄.Reently, we have proposed a method to ontrol the dy-namial behavior of oupled osillators, where multilinearfeedbak is employed to ontrol the funtional form of theoupling funtion in the phase model [4℄. This methodhas advantages that it an be used without knowing de-tailed mehanism of eah osillator and that only sum ofthe signals from all the osillators are required to deter-mine the feedbak signals. Later, we have generalized thismethod suh that it an be even applied to the ase wherethe oupling strength, observables, and feedbak signalsare inhomogeneous [5℄. In that study, the dynamial behav-ior is ontrolled by measuring signals from the osillatorsthrough measurement nodes and applying feedbak signalsthrough stimulation nodes.In the present paper, we will further extend our previ-ous theory [5℄ so that the delays and strengths of the feed-bak signals beome node-dependent,whihmakes variousphase relationships obtainable. We will show by a simula-tion that various dynamial behaviors are atually obtainedusing the extended theory.

2. TheoryConsider a oupled-osillator system desribed by�xi = F(xi) + �dfi(xi) + 1N NXj=1 �i jP(xi; x j); (1)where F(xi) + �dfi(xi) denotes a set of funtions desribinga limit yle, with F(xi) a ommon part and �dfi(xi) thedeviation from it for the ith osillator. N is the numberof osillators, �i j is the oupling strength, and P(xi; x j) isa funtion haraterizing the way of oupling between theith and jth osillators. We assume that �d and N�1 PNj=1 �i jare suÆiently smaller than unity and that F(xi), fi(xi), andP(xi; x j) are the funtions ofO(1). Then, Eq. (1) is reduedto the phase model as follows:��i = !̄ + �d!i + 1N NXj=1 �i jq(�i � � j); (2)where!i = (1=2�) R 2�0 d�Z(�i+�) �fi(x0(�i+�)) and q(�i�� j) = (1=2�) R 2�0 d�Z(�i+�) �g(�i+�; � j+�)r, the latter ofwhih is alled oupling funtion. Here, we have de�nedZ(�i) � gradx�jx=x0(�i) and g(�i; � j)r � P(x0(�i); x0(� j)),with r a unit vetor and x0(�) a point on the limit yle ata phase �.Let several measurement and stimulation nodes beplaed in the system, as shown in Fig. 1. Here, we havealled an element used for the measurement of the signalsfrom its neighborhood osillators as `measurement node',while that used for the stimulation of the feedbak signalsto its neighborhood osillators as `stimulation node'. Thedata obtained from the measurement nodes are analyzed atthe host omputer and the feedbak signals with time de-lays are applied from the stimulation nodes to the osilla-tors. Then, the dynamis of the osillators are desribed asfollows:�xi = F(xi) + �dfi(xi) + 1N NXj=1 �i jP(xi; x j)+ 1N X�; �0��(�)i 2M+1Xm=1 �(�)m P()0 (t � �(�)m )rf ; (3)where � and  denote indies of the stimulation and mea-surement nodes, respetively. �0� haraterizes onnetiv-ity between the th measurement and the �th stimulation
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node. P()0 (t) � PNj=1 �()j p(xi(t)) is the signal obtained fromthe th measurement node, where p(x j(t)) is an arbitrarysingle-valued funtion of x j(t), and �()j is a weighting fa-tor for the measurement through the th node. �(�)i hara-terizes the magnitude of the feedbak signal applied fromthe �th node to the ith osillator. �(�)m and �(�)m are thetime delay and strength of the mth feedbak signal fromthe th measurement node to the �th stimulation node, re-spetively, whih we will speify in the following. Notethat �(�)m and �(�)m were ommon to all the measurementand stimulation nodes in our previous study [5℄. rf is a unitvetor whih an be seleted in an arbitrary manner. Thenumber of the feedbak signals is set at 2M + 1, where thede�nition of M will be desribed later.We assume that the ontribution of the fourth term in theright-hand side of Eq. (3) is suÆiently smaller than that ofF(xi). Then, Eq. (3) is redued to the phase model as��i = !̄ + �d!i + 1N NXj=1 �i jq(�i(t) � � j(t))+ 1N X�; �0��(�)i 2M+1Xm=1 �(�)m NXj=1 �()j q f (�i(t) � � j(t � �(�)m )); (4)where PNj=1 �()j q f (�i � � j) = (1=2�) R 2�0 d�Z(�i + �) �PNj=1 �()j p(x0(� j + �))rf . The method for speifying theoupling funtions q(�i �� j) and q f (�i �� j) in atual sys-tems was already reported [4℄.On the other hand, we suppose that the following equa-tion leads to the target state we aim to obtain:��i = !̄ + �d!i + 1N NXj=1 �i jq(�i(t) � � j(t))+ 1N X�; �0��(�)i NXj=1 �()j �q�(�i(t) � � j(t)); (5)where we all �q�(�i � � j) the target oupling funtion.Note that the target oupling oupling funtion here de-pends on the indies of the nodes � and . The fun-tional form of �q�(�i � � j) and the parameters related tothe positions of the nodes, �0�, �(�)i , and �()j , are deter-mined through the simulation of Eq. (5) so that the de-sired phase relationship is obtained. �q�(�i � � j) thus de-termined and q f (�i � � j) are expanded to Fourier series as�q�(�i �� j) = PMk=�M �a(�)k exp[ik(�i ��j)℄ and q f (�i �� j) =Pk a( f )k exp[ik(�i � �j)℄, respetively, where �a(�)�k = �a(�)�kand a( f )�k = a( f )�k . Note that M is de�ned as the highest har-moni of �q�(�i � � j), sine we aim to ontrol the oupledosillators with a �nite number of suh harmonis.We will determine the values of �m and �m so that Eq. (4)orresponds to Eq. (5). We obtain the following relation byomparing eah Fourier oeÆient up to theMth harmoni:�ak(�) = 2M+1Xm=1 �(�)m a( f )k eik!̄�(�)m : (6)
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Figure 1: Sheme of a system onsidered in the theory. Theosillators (empty irles) are oupled to eah other. Dataobtained from the measurement nodes (gray squares) areanalyzed at the host omputer and the feedbak signals areapplied from the stimulation nodes (blak squares).Here, we have used the approximation � j(t � �(�)m ) �� j(t) � !̄�(�)m , whih is appliable as far as �(�)m is om-parable to or shorter than the natural osillation period. Al-though Fourier oeÆients of the harmonis higher thanM in q f (�i � � j) generally have non-zero values, we anminimize their ontributions by takingM suÆiently large.Equation (6) is rewritten in a matrix form as0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB�
A(�)0A(�)1A(�)2:::A(�)MB(�)1B(�)2:::B(�)M

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA =
0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB�

1 1 : : : 1os(!̄�(�)1 ) os(!̄�(�)2 ) : : : os(!̄�(�)2M+1)os(2!̄�(�)1 ) os(2!̄�(�)2 ) : : : os(2!̄�(�)2M+1)::: ::: : : : :::os(M!̄�(�)1 )os(M!̄�(�)2 ): : :os(M!̄�(�)2M+1)sin(!̄�(�)1 ) sin(!̄�(�)2 ) : : : sin(!̄�(�)2M+1)sin(2!̄�(�)1 ) sin(2!̄�(�)2 ) : : : sin(2!̄�(�)2M+1)::: ::: : : : :::sin(M!̄�(�)1 ) sin(M!̄�(�)2 ): : :sin(M!̄�(�)2M+1)
1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB�
�(�)1�(�)2::::::::::::�(�)2M�(�)2M+1

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA ; (7)
where A(�)k = Re[�a(�)k =a(f )k ℄ and B(�)k = Im[�a(�)k =a(f )k ℄.Thus, when the values of �(�)1 , �(�)2 , � � �; and �(�)2M+1are determined, the orresponding values of �(�)1 , �(�)2 ,� � �; and �(�)2M+1 an be derived by solving Eq. (7).We should selet �(�)m 's suh that P2M+1m=1 j�(�)m j does nothave a large value, otherwise the validity of the phasemodel will be lost (see details in [4℄). We have seletedthem as follows. Let �(�)m be set at �(�)m = (2�)=!̄ �fra (�m � !̄�0=(2�)) + �0, where fra(�) means the fra-tional part and �0 is a time neessary for proessing sig-nals. Then, �(�)1 , �(�)2 , � � �, and �(�)2M+1 are alulated fromEq. (7) with hanging � within the range of 0 � � <1, and �(�)1 , �(�)2 , � � �; and �(�)2M+1 are determined fromthe value of � where P2M+1m=1 j�(�)m j beomes small. Notethat sine P2M+1m=1 j�(�)m j annot have a value smaller thanMax[jA(�)k j; jB(�)k j℄, �q�(�i(t) � � j(t)) should be determinedso that Max[jA(�)k j; jB(�)k j℄ does not have a large value.
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Figure 2: Four target states. The relative phases we aimto obtain (the phase of the 1st osillator is set at 0) areshown by solid lines. Sine the phase is 2�-periodi, it isexpressed within the range of (a) [�1:8�; 0:2�℄, (b) [0; 2�℄,and ()(d) [�0:2�; 1:8�℄ (also in Figs. 3 and 5).3. SimulationLet us on�rm the validity of this method through a sim-ulation. Here we onsider a ase where Bonhoe�er-vander Pol osillators are plaed in a one-dimensional arrayand oupled to the nearest neighbors, within whih sev-eral measurement and stimulation nodes are plaed (Fig. 4).The model equations are given as 0:2�ui�vi ! =  �vi + ui � u3i =3ui + 0:8 ! + 1N Xj=i�1 �i j(u j � ui)r+ 1N X�; �0��(�)i 2M+1Xm=1 �(�)m P()0 (t � �(�)m )rf ; (8)where r = rf = (1; 0)T, N = 50, and P()0 (t) =PNj=1 �()j u j(t). The natural oupling strength �i j ( j = i � 1)is set at 0.25. The weighting fators �()j and �(�)i are givenas�()j = exp[�jj�sj=��℄ and �(�)i = exp[�ji�s�j=��℄, wheres and s� are the positions of the th measurement and �thstimulation node, respetively. �� and �� haraterize therange where the measurement node an detet the signalsfrom the osillators and where the stimulation node an ap-ply the feedbak signals, respetively, whih are both set at10. In the simulation, the Runge-Kutta method is employedwith the time intervals of 0.02. The initial onditions are setat ui = vi = 1:5 for all i. We have seleted four target statesas typial examples where the ontrol sueeds, whih areshown in Fig 2.First, the oupling funtions q(�i � � j) and q f (�i � � j)are spei�ed. They are derived in the same manner asin our previous study (Figs. 1(a) and (b) in [4℄). Sineq f (�i � � j) has nonnegligible Fourier omponents up to�7th harmoni, we have seleted M as 8. On the otherhand, the funtional form of �q�(�i � � j), the positions ofthe nodes s and s�, and the parameter �0� are explored

(a) (b)

(c) (d)

Figure 3: Temporal evolutions of relative phase (the phasedi�erene between the ith and �rst osillators) obtainedfrom the simulation of Eq. (5) for eah target state (Fig. 2).through the simulation of Eq. (5) by trial and error so thatthe target state is obtained. Figure 3 shows the temporalevolutions of the phase di�erene between the �rst and ithosillators obtained from the simulation of Eq. (5) with theinitial ondition of �i = 0 for all i, when the funtional formof �q�(�i � � j) and the positions of the nodes are given asshown in Fig. 4. Here, �0� is set at 0.05 when the measure-ment and stimulation nodes in Fig. 4 are onneted by anarrow, otherwise we set �0� = 0. It is lear that the targetstates are obtained under these onditions.Next, the parameters �(�)m and �(�)m are determined. Wehave alulated Eq. (7) with hanging � by a step of 0.001,and have seleted �(�)m and �(�)m using the value of � whereP2M+1m=1 j�(�)m j beomes small. Figure 5 shows the simulatedresult of Eq. (8) where the spei�ed values of �(�)m and �(�)mare used. The obtained result is in good agreement withthat obtained from the simulation of Eq. (5) (Fig. 3). Thus,the present method leads to the desired phase relationshipsuessfully.4. DisussionWe have proposed a method to ontrol the phase rela-tionship among oupled osillators using multilinear feed-bak. Whereas the target oupling funtionwas ommon toall the measurement and stimulation nodes in our previousstudy [4, 5℄, we have extended the theory so that it dependson the indies of the nodes � and . Thus, we an explorethe funtional forms of the target oupling funtions andthe positions of the nodes with few restritions, whih willmake it possible to obtain various dynamial behaviors. In-deed, we have shown by the simulation that various phaserelationships are obtained suessfully.
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�����Figure 4: Funtional forms of �q�( ) and positions ofnodes for eah target state. Empty irles, empty squares,and �lled squares denote the osillators, the measurementnodes, and the stimulation nodes, respetively. We set�0� = 0:05 when the measurement and stimulation nodesare onneted by an arrow, otherwise we set �0� = 0. Thenotations (i), (ii) and (iii) in the �gures orrespond to thefuntional forms of �q�( ) shown below.The present method requires only the signals from sev-eral measurement nodes to determine the feedbak sig-nals, in ontrast to the nonlinear method where individ-ual signals from all the osillators are required [8℄. This islearly advantageous beause it is often pratially diÆultto measure individual signals and to proess them rapidly,partiularly when the number of osillators is large suh asneural systems.Sine the phase model is based on the assumptions thatthe osillators onstituting the system are nearly identialand that the interations between them are weak enough,the present method will not be appliable when these as-sumptions do not hold. Moreover, the robustness of theontrol is not guaranteed in the present method. In fat,we have found that the ontrol often fails when noise orinhomogeneity of the natural frequenies of the osillatorsexists. Nevertheless, we onsider that the robust ontrolwill be possible if we arefully selet the funtional formof �q�(�i � � j) and the positions of the nodes so that thesystem has an attrator at the target state with large basinof attration. A strategy to selet them will be developed innear future. Referenes[1℄ A. Pikovsky, M. Rosenblum, and J. Kurths, Synhro-nization: A Universal Conept in Nonlinear Sienes,
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Figure 5: Temporal evolutions of relative phase obtainedfrom the simulation of Eq. (8) for eah target state (Fig. 2).The way how the phase is de�ned from the real data is de-sribed elsewhere [5℄.Cambridge University Press, Cambridge, England,2001.[2℄ P. A. Tass, Phase Resetting in Mediine and Biology:Stohasti Modelling and Data Analysis, SpringerVerlag, Berlin, 1999.[3℄ A. J. Ijspeert, �Central pattern generators for loomo-tion ontrol in animals and robots: a review�, NeuralNetworks, vol.21, pp.642-653, 2008.[4℄ T. Kano and S. Kinoshita, �Method to ontrol the ou-pling funtion usingmultilinear feedbak�,Phys. Rev.E, vol.78, pp.056210, 2008.[5℄ T. Kano and S. Kinoshita, �Generalized Methodto Control Coupled-osillator System Using Multi-linear Feedbak�, Forma, in press.[6℄ Y. Kuramoto,Chemial Osillations, Waves, and Tur-bulene, Springer Verlag, Berlin, 1984.[7℄ I. Z. Kiss, Y. Zhai, and J. L. Hudson, �Prediting mu-tual entrainment of osillators with experiment-basedphase models�, Phys. Rev. Lett., vol.94, pp.248301,2005.[8℄ H. Kori, C. G. Rusin, I. Z. Kiss, and J. L.Hudson, �Synhronization engineering: Theoretialframework and appliation to dynamial lustering�,Chaos, vol.18, pp.026111, 2008.
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