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Abstract—This paper proposes an innovative genera-
tion method of extremely ill-conditioned integer matri-
ces. This method is superior to the conventional Rump’s
method, i.e., the former has a simpler algorithm and can
generate more variety of ill-conditioned matrices than the
latter.∴

1. Introduction

Extremely ill-conditioned matrices are required to ex-
amine the quality of accuracy-guaranteed algorithms for
solving linear simultaneous equations[1]–[6]. Here an ill-
conditioned matrix implies that its condition number is
1016 ∼ 10100 or larger in the double precision arithmetic.

Once S. Rump[7] proposed a method to generate ex-
tremely ill-conditioned matrices. His method utilized
the Pell equation, which is well-known in the number
theory[12]. The method is most well-known and is used as
a standard tool to generate an ill-conditioned matrix with an
arbitrary condition number in the INTLAB, but the variety
of generated matrices is not so large because the number of
solutions of the Pell equation is not so many. So we want
other methods to obtain more variety of matrices. From
this point of view we proposed [8][10][11] several methods
which are considered as extensions of Rump’s method[7].

In this paper we propose another method to generate
ill-conditioned matrices. It has the following features
in comparison with Rump’s method[7] and its extensions
[8][10][11]: (i) it has a simpler algorithm, (ii) the ob-
tainable condition number is roughly the same as previ-
ous ones, (iii) it generates much variety of matrices. The
obtained matrices are somewhat similar to the companion
matrix.

2. Preliminaries

Let µ be a large positive integer such as 108, 1016 or 253

(butµ = 10 orµ = 2 may also be permissible theoretically)
and let ann × n integer matrixA = [ai j ] to be determined
satisfy|ai j | ≤ µ. It is very probable that the maximum con-
dition number ofA is large, asµ is large. Our purpose is to
generate an integer matrixA = [ai j ] such that|ai j | ≤ µ and
Cond(A)(= ‖A‖‖A−1‖) is extremely large.

2.1. Outline of Rump’s method

One of the key points of Rump’s method is to find a 2×2
integer matrixV1 s.t.

1The symbolV is different from that in the original Rump’s paper[7].

V =
[

P kQ
Q P

]
, |V| =

∣∣∣∣∣ P kQ
Q P

∣∣∣∣∣ = 1 (1)

The condition|V| = 1 is important for an ill-conditioned
matrix. The integersP andQ are extremely large such as
1050 and are chosen so as to satisfy the Pell equation:

P2 − kQ2 = 1 (2)

Thus |V| = 1 in Eq.(1) is satisfied. Then utilizingV in
Eq.(1), he proposed a (2n+ 2)× (2n+ 2) integer matrixA
and showed by rather tricky calculations thatA satisfies

Cond∞(A) = ‖A‖∞‖A−1‖∞ ≥ (P+ Q)(P+ kQ) ∼ 4µ2(n+1)

(3)
The last term (4µ2(n+1)) is obtained under certain reason-
able assumptions. SinceA is a (2n+ 1)× (2n+ 1) matrix,
we see that the condition number in Eq.(3) per degree is
approximatelyµ, i.e.,{Cond∞(A)}1/(2n+1) ≈ µ.

2.2. Previous extensions of Rump’s method

We showed[8][10][11] that Rump’s algorithm can easily
be generalized by replacingV in Eq.(1) with the following
two kinds of matrices.

2.2.1 ReplacingV by more general type of a 2× 2 matrix

The matrixV was generalized as:

V′ =
[

P F
Q G

]
, |V′| = PG− QF = 1 (4)

PrescribedP andQ having no common factor, e.g.,

P = 2k, Q = 3m

P = 2k15k211k3, Q = 3m17m2

we can findF andG satisfying Eq.(4) by using the Euclid
algorithm[13].

2.2.2 ReplacingV by a 3× 3 matrix

3. Generation of ill-conditioned matrices similar to the
companion matrix

3.1. Generation method

In this section we consider the generation of an ill-
conditioned matrix, which is similar to a companion ma-
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trix. Let A be ann× n integer matrix such that

A =



a1 a2 a3 a4 · · · an−1 an
1 −σ1 0 0 · · · 0 0
0 1 −σ2 0 · · · 0 0
0 0 1 −σ3 · · · 0 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · −σn−2 0
0 0 0 0 · · · 1 −σn−1


(5)

Without loss of generality we can assume

0 < σi < µ (i = 1,2, · · · ,n− 1) (6)
|ai | < µ (i = 1,2, · · · ,n) (7)

In this paper we determineai (i = 1, · · · ,n) such that

(((a1σ1 + a2)σ2 + a3)σ3 + · · ·)σn−1 + an = 1 (8)

Eq.(8) corresponds to|V| = 1 in Eq.(1). From the above we
see thatai (i = 1,2, · · · ,n) necessarily include both positive
and negative values. Referring to Eq.(8), we will describe
how we determineai .

3.2. Determination ofai

We determineai by the following three steps:
Step1: From Eq.(8) we have

1− an ≡ 0 (modσn−1) (9)

from which we have
1− an

σn−1
=: kn−1, (kn−1 = 0,±1,±2,±3, · · ·) (10)

Thus we have
an = 1− σn−1kn−1 (11)

Thereforekn−1 has to satisfy from Eq.(7) the following
equation:

|an| = |1− σn−1kn−1| < µ (12)
i.e.,−µ < 1− σn−1kn−1 < µ. This can be rewritten as

1+ µ > σn−1kn−1 > −µ + 1 (13)

from which we have
1+ µ
σn−1

> kn−1 >
−µ + 1
σn−1

(14)

From the above and Eq.(14) we see that

kn−1 =

[
1+ µ
2σn−1

]
(> 0) or

[
1− µ
2σn−1

]
(< 0) (15)

are appropriate candidate ofkn−1, butkn−1 is not limited to
Eq.(15). We havean from kn−1 and Eq.(11) by Eq.(11).
Step 2: Quite similarly we can derive equations corre-
sponding to Eqs.(9)–(15) successively. We takej = 1, 2,
· · ·, n−1 in the order. Then we havekn−2, kn−3, · · ·, k1, an−1,
an−2, · · ·, a2 as follows:

kn− j − an− j ≡ 0 (modσn− j−1) (16)
kn− j − an− j

σn− j−1
≡ kn− j−1, (kn− j−1 = 0,±1,±2, · · ·) (17)

an− j = kn− j − σn− j−1kn− j−1 (18)
|an− j | = |kn− j − σn− j−1kn− j−1| < µ (19)
kn− j + µ

σn− j−1
> kn− j−1 >

−µ + kn− j

σn− j−1
(20)

We therefore have:

kn− j−1 =

[
kn− j + µ

2σn− j−1

]
(> 0) or

[−µ + kn− j

2σn− j−1

]
(< 0)

(21)

are appropriate candidate ofki .
Step3:

a1 ≡ k1 (22)

Sinceai have to satisfy Eq.(8), we assume
Assumption1: We chooseai as

a2i > 0, a2i+1 < 0 ∴ k2i < 0, k2i+1 > 0 (i = 1,2, · · · , )
or
a2i < 0, a2i+1 > 0 ∴ k2i > 0, k2i+1 < 0 (i = 1,2, · · · , )

For convenience let
kn = 1 (23)

Then we can calculatea j andk j recursively forj = n−1, n−
2, · · · ,2 in this order by both Eq.(24) and Assumption 1.

k j+1 + µ

σ j
> k j >

−µ + k j+1

σ j
(24)

k j =

[
k j+1 + µ

2σ j

]
(> 0) or

[
k j+1 − µ

2σ j

]
(< 0) (25)

is reasonable candidates ofk j .

a j+1 = k j+1 − σ jk j (26)

Eq.(25) is only an example of choice and we can also
choose many other values.

3.3. Condition number of A in Eq.(5)

In this section we calculate the condition number ofA in
Eq.(5) with the∞-norm. For this purpose we need to calcu-
late the inverse matrixA−1, which can be easily calculated
in a similar way as in [8] as follows:

Let

H ≡



1 0 0 0 · · · 0
∏n−1

1 σi

0 1 0 0 · · · 0
∏n−1

2 σi

0 0 1 0 · · · 0
∏n−1

3 σi
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 1 σn−2σn−1
0 0 0 0 · · · 0 σn−1
0 0 0 0 · · · 0 1


(27)

Then we have

A′ ≡ AH

=



a1 a2 a3 a4 · · · an−2 an−1 an
1 −σ1 0 0 · · · 0 0 0
0 1 −σ2 0 · · · 0 0 0
0 0 1 −σ3 · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 1 −σn−2 0
0 0 0 0 · · · 0 1 −σn−1



×



1 0 0 · · · 0 0
∏n−1

1 σi

0 1 0 · · · 0 0
∏n−1

2 σi

0 0 1 · · · 0 0
∏n−1

3 σi
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 0 σn−2σn−1
0 0 0 · · · 0 1 σn−1
0 0 0 · · · 0 0 1


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=



a1 a2 a3 a4 · · · an−2 an−1 1
1 −σ1 0 0 · · · 0 0 0
0 1 −σ2 0 · · · 0 0 0
0 0 1 −σ3 · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 1 −σn−2 0
0 0 0 0 · · · 0 1 0


Let

A′ =
[

U 1
W 0

]
U =

[
a1 a2 a3 · · · an−1

]

W =


1 −σ1 0 0 · · · 0
0 1 −σ2 0 · · · 0
0 0 1 −σ3 · · · 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 −σn−2
0 0 0 · · · 0 1


∴ (A′)−1 =

[
0 W−1

1 −UW−1

]

W−1 =



1 σ1 σ1σ2
∏3

1σi · · · ∏n−2
1 σi

0 1 σ2 σ2σ3 · · · ∏n−2
2 σi

0 0 1 σ3 · · · ∏n−2
3 σi

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 σn−2
0 0 0 · · · 0 1


−UW−1 = − [ a1 a2 a3 · · · an−1

]

×



1 σ1 σ1σ2
∏3

1σi · · · ∏n−2
1 σi

0 1 σ2 σ2σ3 · · · ∏n−2
2 σi

0 0 1 σ3 · · · ∏n−2
3 σi

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 σn−2
0 0 0 · · · 0 1


= − [ K1, K2, K3, · · · , Kn−1

]
where

K j ≡ a1

j−1∏
i=1

σi + a2

j−1∏
i=2

σi + · · · + a j ( j = 1,2, · · · ,n− 1)

i.e.,
K1 = a1
K2 = a1σ1 + a2
K3 = a1σ1σ2 + a2σ2 + a3

...
Kn−1 = a1

∏n−2
i=1 σi + · · ·

So we have the final form ofA−1 as:

A−1 = H(A′)−1 (28)

=



1 0 0 0 · · · 0
∏n−1

1 σi

0 1 0 0 · · · 0
∏n−1

2 σi

0 0 1 0 · · · 0
∏n−1

3 σi
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 1 σn−2σn−1
0 0 0 0 · · · 0 σn−1
0 0 0 0 · · · 0 1



×



0 1 σ1 σ1σ2
∏3

1σi · · · ∏n−2
1 σi

0 0 1 σ2 σ2σ3 · · · ∏n−2
2 σi

0 0 0 1 σ3 · · · ∏n−2
3 σi

· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 1 σn−2
0 0 0 0 · · · 0 1
1 −K1 −K2 −K3 · · · · · · −Kn−1


=


∏n−1

1 σi 1− K1
∏n−1

1 σi · · · ∏n−2
1 σi − Kn−1

∏n−1
1 σi∏n−1

2 σi −K1
∏n−1

2 σi · · · ∏n−2
2 σi − Kn−1

∏n−1
2 σi

· · · · · · · · · · · ·
1 −K1 · · · −Kn−1


We therefore have

||A−1||∞ > max

n−1∏
1

σi , (−Kσn−1 + 1)
n−2∏
i=1

σi

 (29)

||A||∞ > max

 n∑
i=1

|ai |,max(σi + 1)

 (30)

Finally we have

Cond∞(A) >

n−1∏
1

σi

 n∑
1

|ai | (31)

This corresponds to the Rump’s result in Eq.(3). If we
choose

|ai | ∼ µ, νi ∼
√
µ (32)

then we see thatKn−1 ∼ µ
n
2−1. We therefore see from

Eqs.(31) and (32) that

Cond∞(A) > µ
n
2−1 · µ n−1

2 (n− 1)µ ∼ nµn− 1
2 (33)

Since the size ofA is n, the condition number per degree is
approximatelyµ, that is, Eq.(31) is approximately equal to
that in [7].

3.4. Considerations through examples

Example1: Let

µ = 10, n = 4, σ1 = σ2 = σ3 = 5 (34)

We chooseki andai using Eqs.(9)– (22).
Since 1− a4 must be divided by 5, we have

a4 = 1,−4, 6,−9, · · ·

So we choosea4 = −9 as an example. Thenk3 = (1 −
a4)/5 = 2.

Sincek3 − a3 must be divided by 5, we choosea3 = 7
and thereforek2 = −1. Since (k2 − a2) must be divided by
5, we choose asa2 = −6 andk1 = a1 = 1. Then ((1× 5+
(−6))× 5+ 7)× 5+ (−9)) = 1 surely holds.

We therefore have

A =


1 −6 7 −9
1 −5 0 0
0 1 −5 0
0 0 1 −5

 (35)

A−1 =


125 −124 130 −225
25 −25 26 −45
5 −5 5 −9
1 −1 1 −2

 (36)

- 37 -



from which we see that

Cond∞(A) = ||A|| · ||A−1|| = 13892 (37)

We have|A| = −1 and the singular values ofA are about
14.1, 5.14, 4.42, and 0.00312. Therefore we have

Cond2(A) =
14.109418
0.0031213

≈ 4520.2995

Remark 1: From the above results, we see that (i)A has
a considerably large condition number even for such small
µ andn, (ii) A has three large singular values and an ex-
tremely small one, and (iii)A−1 is very near to a matrix
with rank one.
Example2: Let

µ = 1000, n = 4, σ1 = σ2 = σ3 = 50 (38)

In a similar way as in Example 1 we chooseki andai using
Eqs.(9)–(22).

Since 1−a4 must be divided by 50, we choosea4 = −799
andk3 = (1− a4)/50= 16.

Sincek3 − a3 must be divided by 50, we choose asa3 =
716 and thereforek2 = −14. Since (k2−a2) must be divided
by 50, we choose asa2 = −864 andk1 = a1 = 17. Then
((17× 50+ (−864))× 50+ 716)× 50+ (−799))= 1 holds.

We therefore have

A =


17 −864 716 −799
1 −50 0 0
0 1 −50 0
0 0 1 −50


A−1 =


125000 −2124999 1750050 −1997500
2500 −42500 35001 −39950
50 −850 700 −799
1 −17 14 −16


from which we see that

Cond∞(A) = ||A|| · ||A−1|| ≈ 13× 108 (39)

We have|A| = −1, and singular values are about 1380, 50.0,
49.4 and 0.0000003. Then we have

Cond2(A) =
1378.5521
0.0000003

≈ 4.693· 109

Thus A has a considerably large condition number for
µ = 1000 andn = 4 and a similar remark as Remark 1
in Example 1 holds.

We see from the above examples that we do not obtain
uniform singular values distribution. The reason is omitted
here due to the lack of space. As a trial to obtain more uni-
form singular value distribution, we can chooseσ1 = 1 but
the result is not necessarily good. The desirable singular
value distribution will be discussed in near future.

4. Conclusion

This paper proposed an innovative generation method of
extremely ill-conditioned integer matrices. This method is
superior to the conventional Rump’s method in some re-
spects.
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