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Abstract—This paper focuses on so-called weighted
variants of nonnnegative matrix factorization (NMF) and
more generally nonnnegative tensor factorization (NTF)
approximations. We consider multiplicative update (MU)
rules to optimize these approximations, and we prove that
under certain conditions the results on monotonicity of MU
rules for NMF generalize to both the NTF and the weighted
NTF (WNTF) cases.

1. Introduction

Nonnegative matrix factorization (NMF) [1] or more
generally nonnegative tensor factorization (NTF) [2] ap-
proaches consist in approximating nonnegative matrices
(or tensors) by lower rank structured matrices (or tensors)
composed by nonnegative latent factors. These approxi-
mations can be useful for revealing some latent data struc-
ture [3] or for compressing the data [4]. Thus they have
recently gained a great popularity in both machine learn-
ing [5, 6] and signal processing [7, 8] communities. As
such, they were applied for non-supervised image classi-
fication [5], image inpainting [6], polyphonic music tran-
scription [7], audio source separation [9–11], where such
approaches have recently became the de facto state of the
art, audio coding [4], etc.

In this paper we focus on a particular kind of NMF
(NTF) methods called weighted NMF (WNMF) (weighted
NTF (WNTF)), where the contribution of each data point
to the approximation is weighted by a nonnegative weight.
Weighted NMF was already used for face feature extrac-
tion [12], ratings prediction [13, 14], mass spectrometry
analysis [15], as well as for audio source separation with
perceptual modeling [9,10]. A particular WNTF modeling,
namely a weighted three-way “PARAFAC” factor analysis,
was considered in [16]. The NTF modeling for tensors with
possibly missing entries [17] could be considered as a par-
tial case of WNTF, where the weights can be either ones
(observed) or zeros (missing).

Concerning the algorithms to compute NMF (NTF) de-
compositions, one of the most popular choice among the
others [2] are the multiplicative update (MU) rules [1, 3].
While in terms of convergence speed MU is not the fastest
approach [2], its popularity can be explained by the sim-
plicity of the derivation and implementation, as well as

by the fact that the nonnegativity constraints are inher-
ently taken into account. Deriving MU rules for WNMF
(WNTF) is quite straightforward, and it was already done
for WNMF, e.g., in [13, 15]. However, few works analyse
their convergence properties in terms of monotonicity of the
optimized criterion, i.e., by theoretically studying whether
the criterion to be minimized remains non-increasing at
each update. While several results on monotonicity of MU
rules for NMF exist [1,18,19], less work (e.g., [12,14]) just
reports the results on monotonicity of MU rules for WNMF
in particular cases of the Euclidean (EU) distance and the
Kullback-Leibler (KL) divergence. To our best knowledge
there are no such results either for WNTF, or for other di-
vergences, such as α or β-divergences [3, 20].

This is a purely theoretical work and its contribution
is two-fold. We consider a quite general NTF formula-
tion inspired by the probabilistic latent tensor factorization
(PLTF) [17] (we however do not push forward the proba-
bilistic aspect) and covering many existing divergences and
MU rules (e.g., those considered in [1,18,19]). First, within
this formulation we show that the results on the MU rules
monotonicity for the NMF generalize to the general NTF
case. Second, we show that within the same formulation
all the results on the MU monotonicity for the NMF and
the NTF generalize to the corresponding weighted cases.
While such results are quite natural and expected, no for-
mal proves were provided so far. A more detailed presen-
tation of these results together with a practical application
of WNTF to audio source separation can be found in our
longer report [21].

The remaining of this paper is organized as follows.
WNMF and WNTF together with a general formulation of
the MU rules are presented in section 2. New results on
monotonicity of these rules are given in section 3. Some
conclusions are drawn in section 4.

2. Weighted NMF and weighted NTF

2.1. Weighted NMF

Let V ∈ RF×N
+ a nonnegative matrix of data that is ap-

proximated by a nonnegative matrix V̂ ∈ RF×N
+ being a

product of two nonnegative latent matrices W ∈ RF×K
+ and

H ∈ RK×N
+ as

V ≈ V̂ =WH. (1)
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This approximation can be rewritten in a scalar form as

v f n ≈ v̂ f n =
∑

k
w f khkn, (2)

where v f n, v̂ f n, w f k and hkn denote, respectively, the entries
of V, V̂, W and H. The goal of NMF consists in finding the
latent parameters Z , {W,H} minimizing the following
criterion:

CNMF(Z) = D(V|V̂) =
∑

f ,n
d(v f n|v̂ f n), (3)

where v̂ f n is given by (2) and d(x|y) is some divergence
(e.g., α-divergence [20] or β-divergence [3]). As such, we
here consider only the case of separable matrix divergences
D(V|V̂), i.e., those computed by element-wise summing of
scalar divergences [19, 22]. However, we believe that our
results below can be easily generalized to some nonsepara-
ble divergences.

Let B = [b f n] f ,n ∈ RF×N
+ a matrix of nonnegative

weights, the goal of WNMF is to optimize the same cri-
terion as (3), except that all the entries in summation are
weighted by b f n:

CWNMF(Z) =
∑

f ,n
b f n d(v f n|v̂ f n). (4)

The MU rules [1–3, 19] consist in updating in turn each
scalar parameter z as follows:

z← z ([∇zC(Z)]−/[∇zC(Z)]+)η , (5)

where η > 0, C(Z) is the cost function to be minimized, its
derivative with respect to (w.r.t.) the parameter writes

∇zC(Z) = [∇zC(Z)]+ − [∇zC(Z)]−, (6)

and the summands are both nonnegative. Note that the de-
composition (6) is not unique and this algorithm is rather a
heuristic one. Thus, neither its convergence, nor its mono-
tonicity is guaranteed and should be studied case by case
[1, 18, 19].

Assuming the derivative over the second argument of our
divergence d(x|y) can be written

d′(x|y) = d′+(x|y) − d′−(x|y), (7)

where d′+(x|y) and d′−(x|y) are both nonnegative, one can
write the following MU rules for WNMF:

w f k ← w f k

(∑
n b f n d′−(v f n|v̂ f n)hkn∑
n b f n d′+(v f n|v̂ f n)hkn

)η
, (8)

hkn ← hkn

(∑
f b f n d′−(v f n|v̂ f n)w f k∑
f b f n d′+(v f n|v̂ f n)w f k

)η
. (9)

Note that this is not the only way to write the MU rules,
since the decomposition (6) could be obtained differently 1.

1In other words, [∇zC(Z)]+ and [∇zC(Z)]− from (5) are not obliged to
be representable in a from as in (8). Indeed, for example it can be noted
that [∇zC(Z)]+ and [∇zC(Z)]− from (8) are sums over n of some terms
with each term depending on its own n. It is obvious that in general not
any decomposition as in (6) can be represented as such a sum.

However, this is the way the MU rules are derived in
many cases, e.g., for the β-divergence as in [3, 18] and for
all separable divergences (including α-divergence and αβ-
Bregman divergence) considered in [19].

2.2. Weighted NTF

We build our presentation following a general formula-
tion of tensor decompositions originally called probabilis-
tic latent tensor factorization (PLTF) [8, 17]. However, we
rather call it here NTF, since we do not push its probabilis-
tic aspect. Our presentation follows very closely the one
from [8, 17], except that we are using slightly different no-
tations and we consider the weighted case.

Instead of matrices (so-called 2-way arrays) we now
consider tensors (so-called multi-way arrays) that are all
assumed nonnegative. For example E = [e f nk] f ,n,k ∈ RF,N,K

+

is a 3-way array. However, for the sake of conciseness and
following [8,17] we use single-letter notations for both ten-
sor indices and their domains of definition, e.g., j = f nk
and J = { f , k, n} f ,n,k in the example above.

Let us introduce the following notations:

• I is the set of all indices,

• V = [vi0 ]i0∈I0 is the data tensor and I0 ⊂ I is the set of
visible indices,

• Zα = [zαiα ]iα∈Iα (α = 1, . . . ,T ) are T latent factors (ten-
sors), Iα ⊂ I, and we also require I = I0∪ I1∪ . . .∪ IT .

• Īα = I\Iα denotes the set of indices that are not in Iα.

With these conventions the matrix approximation (2) can
be extended to

vi0 ≈ v̂i0 =
∑

ī0∈Ī0

∏T

α=1
zαiα . (10)

This formulation generalizes in fact many existing mod-
els. Let us give some examples for a better understanding.
Assuming Z1 = W, Z2 = H, I = { f , n, k}, I0 = { f , n},
I1 = { f , k} and I2 = {n, k}, we get back to the NMF de-
composition (2). The TUCKER3 decomposition [23] (this
example is from [17])

v jkl ≈ v̂ jkl =
∑

p,q,r
z1

jpz2
kqz3

lrz
4
pqr (11)

can be represented as (10) by defining I = { j, k, l, p, q, r},
I0 = { j, k, l}, I1 = { j, p}, I2 = {k, q}, I3 = {l, r} and I4 =

{p, q, r}.
Let Z = {Zα}α=1,...,T set of all latent factors and B =

[bi0 ]i0∈I0 a tensor of nonnegative weights. WNTF criterion
to be minimized writes:

CWNTF(Z) =
∑

i0
bi0 d(vi0 |v̂i0 ). (12)

Finally, relying on the decomposition (7), as in the
WNMF case, one can derive the following MU rules for
WNTF:

zαiα ← zαiα


∑

īα bi0 d′−(vi0 |v̂i0 )
∏

α′,α zα
′

i′α∑
īα bi0 d′+(vi0 |v̂i0 )

∏
α′,α zα′i′α


η

. (13)
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3. New results on monotonicity of MU rules for WNMF
and WNTF

There exist several results on monotonicity of MU rules
for NMF with β-divergence [18] and NMF with other di-
vergences (e.g., α-divergence or αβ-Bregman divergence)
[19]. However, these results are not really extended neither
to a general NTF case, nor to the WNMF or WNTF cases.
Some results for WNMF exist [12, 14], but only in partic-
ular cases of the EU distance and the KL divergence. In
order to fill in these gaps in the state of the art we here pro-
vide the insite on the monotonicity of the NMF MU rules
for NTF, WNMF and WNTF cases. We start with the fol-
lowing lemma.

Lemma 1. When updating one latent factor Zα, given all
other factors {Zα′ }α′,α fixed, criterion (4) is non-increasing
under WNMF MU rules (13) if and only if for each i0 ∩ iα
criterion

CWNTF(Zα
i0∩iα ) =

∑
i0∩īα

bi0∩īα d(vi0∩īα |v̂i0∩īα ), (14)

(where Zα
i0∩iα

= [zα
i0∩iα,i0∩īα

]i0∩īα ) is non-increasing under
these rules.

Proof: The sufficiency is evident, the necessity follows
from the fact that two sets of entries of Zα involved in two
different criteria (14) (corresponding to two different in-
dices i0 ∩ iα , i′0 ∩ i′α) do not overlap.

Proposition 1 (WNMF monotonicity ⇔ WNTF mono-
tonicity). Assume WNMF MU rules (8), (9) and WNTF
MU rules (13) are derived for the same η, for the same
divergence d(x|y) and under the same decomposition (7).
WNMF criterion (4) is non-increasing under the WNMF
MU rules if and only if WNTF criterion (12) is non-
increasing under the WNTF MU rules.

Proof: The sufficiency follows from the fact that WNTF
generalizes WNMF. To prove the necessity, it is enough to
show, thanks to lemma 1, that for updating one latent sub-
factor Zα

i0∩iα
, given i0 ∩ iα ∈ I0 ∩ Iα and given all other

factors {Zα′ }α′,α fixed, expressions (10), (14) and (13) can
be recast into the form of expressions (2), (4) and (9) for
WNMF. We rely on an NTF to NMF reduction trick that is
somehow similar to the one used in [24].

Let us define F = |I0∩ Īα|, N = 1 and K = |Ī0∩ Iα|, where
|A| denotes cardinality of a set A. We can now unfold multi-
way index sets I0 ∩ Īα and Ī0 ∩ Iα onto 1-way index sets
{ f } = {1, . . . , F} and {k} = {1, . . . ,K} using some bijections
f → [i0 ∩ īα]( f ) and k → [ī0 ∩ iα](k). We then define ele-
ments of matrices/vectors V ∈ RF×1

+ , B ∈ RF×1
+ , W ∈ RF×K

+

and H ∈ RK×1
+ as v f 1 = vi0∩iα,[i0∩īα]( f ), b f 1 = bi0∩iα,[i0∩īα]( f ),

hk1 = zα
i0∩iα,[ī0∩iα](k)

and w f k = w̃[i0∩īα]( f )[ī0∩iα](k), where

w̃i0∩īα,ī0∩iα =
∑

ī0∩īα
∏

α′,α zα
′

i′α
. It can be easily checked that

with these notations expressions (10), (14) and (13) rewrite
as expressions (2), (4) and (9) for WNMF.

Even if according to proposition 1 the monotonicity of
the WNMF MU rules implies that of the WNTF MU rules,
the monotonicity of the WNMF MU rules has not been
guaranteed yet. To obtain such results, let us first formu-
late the following lemma, which strictly speaking is not a
direct consequence of proposition 1, but it is very similar
to it.

Lemma 2 (NMF monotonicity ⇔ NTF monotonicity).
This lemma formulates exactly as proposition 1, but with-
out weighting, i.e., with trivial weighting: bi0 = 1 (i0 ∈ I0).

Proof: The proof is exactly as that of proposition 1, except
with trivial weighting.

Proposition 2 (NMF monotonicity⇔WNMF monotonic-
ity). Assume that WNMF MU rules (8), (9) are derived for
some η, some divergence d(x|y) and under some decompo-
sition (7). WNMF criterion (4) is non-increasing under the
WNMF MU rules for a trivial weighting B0 = [1] f ,n (mak-
ing WNMF (4) equivalent standard NMF (3)) if and only
if WNMF criterion (4) is non-increasing under the WNMF
MU rules for any weighting B.

Proof: The sufficiency being evident, let us prove the ne-
cessity. We carry the proof for H update (9), given W fixed.
According to lemma 1, it is enough to show that for each
n = ñ the following criterion is non-increasing under the
WNMF MU updates of hñ = [hñk]k (the same trick is used
in proofs in [18]):

CWNMF(hñ) =
∑

f
b f ñ d(v f ñ|v̂ f ñ). (15)

Thus, in the following we fix n = ñ and consider (15) as
target criterion.

We first assume b f ñ ∈ N ( f = 1, . . . , F). Let us introduce
binary matrices A f (ñ) ∈ {0, 1}b f ñ×F . Each matrix A f (ñ)
is zero everywhere except the f -th column that contains
ones. We then define a binary matrix A(ñ) = [al f (ñ)]l, f ∈

{0, 1}L×F , where L =
∑

f b f ñ, that stacks vertically matrices
A f (ñ) as follows:

A(ñ) = [A1(ñ)T , . . . ,AF(ñ)T ]T . (16)

Using A(ñ) we rewrite approximation (2) as follows:

v′lñ ≈ v̂′lñ =
∑

f ,k
al f (ñ)w f khkñ, (17)

where v′lñ =
∑

f al f (ñ)v f ñ. Let us first remark that (17)
is an NTF approximation (w.r.t. v′lñ and v̂′lñ) according to
our general formulation (10). Non-weighted NTF criterion
(12) (i.e., (12) with trivial weighting b′lñ = 1) for approxi-
mation (17) writes

CNTF(hñ) =
∑

l
d(v′lñ|v̂

′
lñ). (18)

It can be easily shown that criterion (18) is strictly equiv-
alent to criterion (15) and that the corresponding MU up-
dates w.r.t. hñ are the same. Moreover, since the mono-
tonicity of non-weighted NMF is assumed, it implies, ac-
cording to lemma 2, the monotonicity of non-weighted
NTF criterion (18), and thus that of criterion (15).

- 42 -



We have proven the result for b f ñ ∈ N. Since multiplying
all the weights by a positive constant factor does not affect
monotonicity of MU updates, the result is proven for b f ñ ∈

Q+. Finally, since Q+ is dense in R+ and since both MU
updates and the corresponding criteria are all continuous
w.r.t. weights and parameters, the result is proven for b f ñ ∈

R+.

Propositions 2 and 1 can be summarized by the following
theorem.

Theorem 1 (NMF monotonicity⇔WNTF monotonicity).
Assume WNMF MU rules (8), (9) and WNTF MU rules
(13) are derived for the same η, for the same divergence
d(x|y) and under the same decomposition (7). WNMF cri-
terion (4) is non-increasing under the WNMF MU rules for
a trivial weighting B0 = [1] f ,n (making WNMF (4) equiva-
lent standard NMF (3)) if and only if WNTF criterion (12)
is non-increasing under the WNTF MU rules.

We have shown that the results on the monotonicity of
NMF MU rules derived as in section 2.1 (in particular,
those from [18] for β-divergence and those from [19] for
separable divergences, e.g., for α and αβ-Bregman diver-
gences) generalize to WNMF, NTF and WNTF cases.

4. Conclusion

We have proven that certain results on monotonicity of
MU rules for NMF generalize to WNMF, NTF and WNTF
cases. The underlined meaning is that that in most cases
considered in the literature the conditions on MU rules
monotonicity depend mostly on the divergence and not on
the NTF structure or weighing. Such results are quite natu-
ral and were expected. However, to the best of our knowl-
edge, no formal proves were provided so far. Future work
will consist in trying to relax the current result conditions
including a restriction to the case separable divergences and
a specific decomposition (7), which does not lead to the
most general form of MU rules.
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