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Abstract—In this paper, we present a resonate-
and-fire type spiking neuron model and parameter up-
date rule to memorize the input frequency as a reso-
nance frequency. We also present a pulse-coupled net-
work of the spiking neuron models and show its SOM
function by numerical simulation.

1. Introduction

Many spiking neuron models have been presented
and investigated [1, 2, 3, 4, 7, 8, 9]. For example,
resonate-and-fire models have been used to investigate
spike-based information coding and processing func-
tions and implemented on electric circuits [2, 4, 7, 8, 9].
Also, resonate-and-fire models have been used to con-
struct pulse-coupled neural networks (PCNNs) whose
application potential include image processing based
on synchronization phenomena [5, 6, 10]. Also, a
self-organizing map (SOM) using digital phase-locked
loops (DPLLs), which can be regarded as a resonate-
and-fire models, was presented [11, 12].

In this paper, first, we propose a subthreshold os-
cillating neuron (SO) model that can be regarded
as a piecewise linearized version of simple Izhikevich
model or a generalized version of Mitsubori-Saito (MS)
model. Second, we present a parameter update rule
based on synchronization phenomena. Third, we pro-
totype a self-organizing network of spiking neurons
(SSN) using the SO models and show its simulation re-
sult. We conclude that the SSN has a basic SOM func-
tion from the simulation result. We emphasize that
typical implementations of an SOM need a minimum
value detector for implementation of the winner-take-
all (WTA) process but the SSN doesn’t because of re-
placing the WTA process by competitive process. We
also emphasize that the SSN memorizes input pulse
train intervals to a natural frequency of the SO model
without a phase detector unlike [12].

2. A spiking neuron model

In this section, we introduce a new spiking neuron.
It is a nonlinear subthreshold oscillating neuron model
which is easily implemented by an electronic circuit.
We use the model as a network element in the next
section. Let t ∈ R+ = {t|t ∈ R, t ≥ 0} be a continu-
ous time. Then we define a periodic input u(t) whose

period is T ∈ R+ i.e.,

u(t) :=
∞∑

n=1

δ(t − nT ) (1)

where δ is the Dirac’s delta function. We use two state
variables v, r∈ R and one weight parameter w∈ R.
v corresponds to a membrane potential and r corre-
sponds to a recovery variable of Izhikevich’s simple
model (2003) respectivety, and w corresponds to a
synaptic weight. For simplicity, we use a state vector
X = [v, r]T∈ R2 and a weight vector W = [w, 0]T∈ R2.
The subthreshold dynamics of a subthreshold oscillat-
ing spiking neuron (SO) model is described by the fol-
lowing equation.

Ẋ = AX + B + Wu
A =

[
a −b

b a

]
, B =

[
0
0

]
for v < η

A =
[

−a −b

b a

]
, B =

[
0

2aη

]
for v > η

(2)

First, we consider an autonomous and subthreshold
oscillating case, i.e., W = [0, 0]T and v stays less than a
firing threshold. We use three parameters a, b, η∈ R to
characterize the subthreshold behavior. In this paper,
we fix (a, η) = (−4π, −20). So the control parameter is
b. Fig:1 shows waveforms and phase space trajectories.
We can see that the SO model oscillates periodically.
We can obtain the approximate period P ∈ R by the
following SO model’s eigen values λ.

λ = a ± bi for v < η (3)

λ = ±bi

√
1 −

(a

b

)2

for η < v, (4)

We assume that |a| is much smaller than |b|, i.e.,
(a/b)2 ≃ 0. Then, the natural period P is approxi-
mated by the parameter b, i.e.,

P ≃ b/2π. (5)

Secondly, we consider an autonomous and firing
case, i.e., W = [0, 0]T and v is greater or equal to the
firing threshold θ ∈ R. Let tn∈ R+ be the n-th mo-
ment when the state v reaches the firing threshold θ,
i.e., t1 = min{t|v(t) ≥ θ, t ≥ 0}, tn+1 = min{t|v(t) ≥
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Figure 1: Typical behaviors of the SO models. (a1)
shows time series of the states , input and output in
autonomous case. (a2) shows its trajectories. (b1)
shows time series of the states , input and output in
non-autonomous case. (b2) shows its trajectories. (a,
b, η, θ, c) = (−4π, 20.0·π, −20, −60, 40). Input period
T = 1/20.

θ, t > tn}. Let t+ = lim
ϵ→+0

t + ϵ. At the moment t = tn,

the state vector X is reset to [c, r]T , i.e.,

X(t+) =
[

c
r(t)

]
if v(t) ≥ θ (6)

where c∈ R is a reset parameter. We refer to such a
reset as a self-firing. An output of the SO model is
given by

y(t) :=
∞∑

n=1

δ(t − tn) (7)

Third, we consider a non-autonomous case, i.e.,
W ̸= [0, 0]T . We define t− = lim

ϵ→−0
t + ϵ and t++ =

lim
ϵ→+0

t+ + ϵ. At the moment t = nT , the state vector

X jumps to X + W by an input pulse u(nT ), i.e.,

X(t+) = X(t−) + W if t = nT (8)

If the state v(t+) overs the firing threshold θ, the state
vector X is reset to [c, r]T , i.e.,

X(t++) =
[

c
r(t−)

]
if v(t+) ≥ θ (9)

We refer to such a reset as a compulsory-firing. The
exact solution of the state X(t) can be obtained by
solving the piecewise linear equation in Eq(2).

2.1. Parameter update rule

We expand the SO model to memorize a period of
the input u(t) by updating the parameter b. We up-
date the parameter b when a compulsory-fire occurs as
the follows.

if t = tn = mT, then
b(t++) = b(t−) + g(r(t−)) (10)

g(r) :=
{

αr for Ll < r < Lu

0 otherwise
(11)

We refer to such an update for g(r) ̸= 0 as valid update
and refer to the parameter b as a dynamic parameter.
Fig:2 shows a bifurcation diagram of the dynamic pa-
rameter b for the input period T .

Figure 2: A typical bifurcation diagram of the dynamic
parameter b for the input period T . [a, η, θ, c,α, Ll,
Lu] = [−4π, −20, −60, 40, −π/60, −30, 30]. Initial
parameter b0 is fixed to 20.0 · 2π. (a) shows w = 15
case. (b) shows w = 30 case. (c) shows w = 100 case.
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As shown in Fig:2, the input period T can be split into
IA, IB and IC . From Fig:2, if the input period T is
close to P (0) = b(0)/2π, then b∗/2π := lim

t→∞
b(t)/2π is

near T , i.e.,

b∗/2π ; T for T ∈ IB (12)

3. A pulse-coupled neural network

In this section, we introduce the self-organizing net-
work of spiking neurons (SSN) interconnected with the
spike train. Let i ∈ N be an index of each spiking neu-
ron and tn,i ∈ R+ be the n-th firing moment of the i-th
neuron. Then we use state variables vi, ui ∈ R , weight
parameter wi ∈ R and dynamic parameter bi ∈ R. For
simplicity, we use a state vector Xi = [vi, ui]T ∈ R2

and a weight vector Wi = [wi, 0]T . The single neuron
is described by the following equations.

Ẋi = AiXi + B + Wiu
Ai =

[
a −bi

bi a

]
, B =

[
0
0

]
for v < η

Ai =
[

−a −bi

bi a

]
, B =

[
0

2aη

]
for v > η

(13)

At the n-th firing moment of the i-th neuron i.e., t =
ti,n, the state vector Xi is reset to [c, ri]T , i.e.,

X(t+) =
[

c
ri(t)

]
if t = tn,i ≥ θ (14)

The output yi of the i-th neuron is given by

yi(t) :=
∞∑

n=1

δ(t − tn,i) (15)

In the SSN, the SO models are connected by the follow-
ing two processes, competitive process and parameter
update process.

1. The competitive process is described by two up-
date rules of weight wi.

(a) At the n-th input moment i.e., t = nT , the
weight wi jumps to wi + δw, i.e.,

if t = nT then
wi(t+) = wi(t−) + δw, for all i

(16)

(b) At the n-th firing moment of the j-th neuron
i.e., t = tn,j , the weight wi jumps to wc ∈ R,
i.e.,

if t = tn,j then

wi(t+) = wc, for all i except i = j

(17)

2. The parameter update process is given by a up-
date rule of dynamic parameter bi, bi±1.

(a) At the moment t = tn,j , we update dynamic
parameter bj , bj±1 when the j-th neuron’s
compulsory-fire occurs, i.e.,

if t = tn,j = mT then{
bj(t++) = bj(t−) + g(rj(t−))
bj±1(t+) = bj±1(t−) + δb

(18)

(b) In this paper, we set 10 neurons in line

δb :=
{

0.1 if bi − bi±1 > 0
−0.1 if bi − bi±1 < 0

Now we simulate the SSN of the SO models by
dynamics. We select input period from {TA :=
1/20, TB := 1/22, TC := 1/24} randomly every two
seconds. We set 10 neurons in line and initial pa-
rameter bi(0) = 20 · 2π for all i. Fig:3(a) shows time
waveforms of the indices of the firing neurons. Fig:3(b)
shows time waveforms of the dynamic parameter bi for
all neurons. Fig:3(c) shows the dynamic parameter bi

at the end of the simulation. We can see that the dy-
namic parameters are clustered into NA, NB and NC

in Fig:3(c). So, we can say that the SNN learns the
input periods by the dynamic parameter bi.

We have also simulated the Kohonen’s SOM numer-
ically. We have confirmed that the Kohonen’s SOM
and the SSN have similar functions. Further detailed
analysis will be presented in another manuscript.

4. Conclusion

We have presented the subthreshold oscillating (SO)
model and the self-organizing network of spiking neu-
rons (SSN). First, we have shown the behavior of the
SO model. Secondly, we have checked the behavior
of the dynamic parameter b using the bifurcation dia-
gram under large weight w. Third, we have presented
the simulation result of the SSN and checked the basic
SOM function. Future problems include classification
and analysis of bifurcation phenomena and the perfor-
mance of the network and application to pulse-based
signal processing.
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Figure 3: A typical result of the ONLINE simulation
of the SSN. This SSN is composed of 10 neurons. (a)
shows the firing moments tn,i for all i in t−i plane. (b)
shows the transition of the dynamic parameter bi for
all i in i − b plane. (c) shows the dynamic parameter
bi in a steady state in i − b plane. [a, η, θ, c, α,
Ll, Lu, δw, wc] = [−4π, −20, −60, 40, −π/60, −30,
30, 5, 5]. Initial dynamic parameter bi(0) is fixed to
20.0·2π for all i. Simulation is done for 200 seconds and
the input intervals are selected randomly from {TA =
1/20, TB = 1/22, TC = 1/24} every 2 seconds.
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