
Can you achieve any function with a 2-neuron CNN?

Mireia Vinyoles-Serra† and Xavier Vilası́s-Cardona†

†LIFAELS, laSalle, Universitat Ramon Llull
Pg. Bonanova 8, 08022 Barcelona, Spain

Email: mireiav@salle.url.edu, xvilasis@salle.url.edu

Abstract—We recover the analysis of the response of
the 2-neuron CNN to its external inputs in the stable sym-
metric case. From this we study which binary functions can
be implemented either directly, either by composing tem-
plates. The results show that some particular combinations
can not be achieved. One of this functions is found when
implementing a universal Turing machine header.

1. Introduction

Cellular Neural Networks (CNNs), as introduced in [1],
[2] are nonlinear dynamical systems completely stable for
certain parameter range. Their behavior is defined by the
CNN parameters usually called cloning template yet some-
times a single cloning template is not enough to solve a
particular problem. In this case, a template combination
can be used. But the necessary templates in order to re-
produce some input-output functional relations is not clear
yet. So we study the simplest but rich case: the two neuron
CNN.

Taking a symmetric set of weights, and the self-feedback
coefficient larger than one, the state variables always con-
verge to ±1. This stability results allow to establish rela-
tions between the CNN parameters and the final outputs
[3], and so aboard the template design and template com-
position problems. From this relations we set which com-
binations are possible with a single template, composing
templates and which are unreachable. For instance, we
shall see how one of the state transitions of the 4-symbol,
7-state universal Turing machine [4] is impossible to be im-
plemented with a two neuron CNN.

2. Convergence map

Focusing our study in the two neuron Cellular Neural
Network, we first define our notation for the piecewise lin-
ear CNN system as:{

ẋ0 = −x0 + sy0 + p+y1 + b0u0 + b+u1 + I,
ẋ1 = −x1 + sy1 + p−y0 + b−u0 + b0u1 + I, (1)

where xi are the internal states of the neuron and
are taken in [−1, 1]. Variables yi are the external
states defined by the piecewise linear function, f (xi) =
1
2 (|xi(t) + 1| − |xi(t) − 1|), i = 0, 1. The external inputs are
ui and they shall be constant in time. Our analysis uses ui’s

as the input variables and the final stable state yi’s as out-
put. The other parameters (s, p+, p−, b0, b+, b−, I) configure
the network cloning template. Along the paper, we will use
the notation,(

u′0
u′1

)
=

(
b0 b+

b− b0

) (
u0
u1

)
+

(
I
I

)
(2)

so that, the action of B on to (u0, u1) to obtain (u′0, u
′
1) will

be called B-transformation.
In order to study the template influence on the CNN

function, we must work in a parameter range where the
system converges to a fixed-point. From Lyapunov theory,
it is known that for s > 1 and p+ = p− = p, the system
converges to one of the four corner points S = {(±1,±1)}.
This particular convergence set allows to aboard classifica-
tion problems using the Lyapunov function defined as

L(y0, y1) = −py0y1 −
s − 1

2
(y2

0 + y2
1) − u′0y0 − u′1y1. (3)

L(y0, y1) is a monotone decreasing function and bounded
from below, so the CNN system converges to the point
where L(±1,±1) is minimum [1]. The comparison of this
four values gives us the necessary convergence conditions
and let’s choose the adequate CNN parameters in order to
guarantee some desired input-output relation. To do it, we
first fix the initial conditions at (0, 0) and then compare the
four possible output values of L(±1,±1) in order to find in
which L takes lower value.

The Lyapunov function (3) takes the minimum value at
(+1,+1), this is L(+1,+1) ≤ L(i, j) i, j = 1,−1 if and
only if parameters fulfill equations: u′0 ≥ −p, u′1 ≥ −p
and u′0 + u′1 ≥ 0. Plotting this region in the (u′0, u

′
1)-plane

we obtain a convergence map and then applying the B-
transformation (2) in order to find the correspondent region
in the (u0, u1)-plane, we obtain a convergence map in Fig-
ure 1.

From these maps, we may fix the parameters of the CNN
to obtain the relation between the external inputs and the fi-
nal outputs. Taking inputs ui inside a convergence region
where L(i, j) is minimum, the system will converge the out-
put value (i, j) in S. The shape of regions L(i, j) depends
only on four parameters: two slopes and two intersection
points, instead of the six apparent free parameters in equa-
tion (1). Knowing for example the slopes of the external
lines m0 = −b−/b0, m1 = −b0/b+, the slope of the line

2010 International Symposium on Nonlinear Theory and its Applications
NOLTA2010, Krakow, Poland, September 5-8, 2010

- 31 -

Figure 1: Convergence maps in the {u′0, u
′
1}-plane and in the

(u0, u1)-plane for p > 0.

connecting them is already determined and, knowing the
two intersection points which depend on m0,m1, I and p,
we complete the construction of the convergence map. For
instance, on Table 1 we can see the line equations defin-
ing the boundaries of the different convergence maps for a
positive value of parameter p.

{u0, u1} plane {u′0, u
′
1} plane

(x−p, yp) =
(

(p−I)−m1(I+p)
b0(m1−m0) ,

m1((p−I)−m0(p+I))
b0(m1−m0)

)
(−p, p)

(xp, y−p) =
(

m1(p−I)−(I+p)
b0(m1−m0) ,

m1(m0(p−I)−(I+p))
b0(m1−m0)

)
(p,−p)

(u1 − yp) = m1(u0 − x−p) u′1 = p
(u1 − yp) = m0(u0 − x−p) u′0 = −p
(u1 − y−p) = m1(u0 − xp) u′1 = −p
(u1 − y−p) = m0(u0 − xp) u′0 = p

(u1 − yp) = m1

(
1−m0
1−m1

)
(u0 − x−p) u′1 + u′0 = 0

Table 1: Intersection points and boundary lines of the con-
vergence regions for p > 0.

From all this study, we also note that we can make the
system converge where we want if we compose different
templates. So for example, composing two templates, the
first one will drive the system to one of the four points yi ∈

S. Using this points as the external inputs ui = yi ∈ S

for the second template, we construct another convergence
map to make each of this new inputs correspond to a new
output.

3. Fixing the CNN parameters

The particular shape of the convergence map seems to
limit the kind of problems which can be solved using a two
neuron CNN. In order to determine whether this limitation
is apparent or real we shall examine the repeated action
of the cloning template. For this we can restrict the input
choice (u0, u1) to ±1 without loss of generality. Using the
B-transformation (2) we shall find their images B(±1,±1),
and the necessary parameter conditions to place them into
a pre-established convergence region in the {u′0, u

′
1}-plane

(Figure 1). This may done by studying if each one of the
image points B(i, j), i, j = ±1, are equal to one of the
four possible outputs S located in each of the four differ-
ent convergence regions. If the output points are located
on a boundary line dividing different convergence regions,

we shall translate the input point (i, j) + (ε, ε), i, j = −1, 1,
ε , 0, and proceed as we have explained before. To sim-
plify the notation, let’s rename S-points with the corre-
spondence shown in Table 2, and the convergence regions
L(i, j) will then be R(k), for k = 1, 2, 3, 4.

(1, 1) ≡ 1 (1,−1) ≡ 2 (−1,−1) ≡ 3 (−1, 1) ≡ 4

Table 2: S-points correspondence.

For example, let us study the convergence of input 1 for
a positive parameter p. If we take 1 coverging to itself,
B(1) = (1, 1), this condition implies that for p > 0, B-
parameters fulfill:

{b0 + b+ + I = 1, b− + b0 + I = 1} . (4)

Next we consider the different outputs where input 3 can
converge. If B(3) = (−1, 1), we have

{−b0 − b+ + I = −1, −b− − b0 + I = 1} . (5)

Solving the system equations (4) and (5), parameter I
must be equal to 0 and 1. Therefore, such an association
can not be achieved by one single 2-neuron CNN.

However, if B(3) = (1, 1), we have

{−b0 − b+ + I = 1, −b− − b0 + I = 1} . (6)

Solving the system equations (4) and (6), we find pa-
rameters I = 1, b+ = b− = −b0. This relation is compatible
with a 2-neuron CNN. Now we study the four possible out-
puts for inputs 2 and 4 where B(2) = (1 − 2b0, 1 + 2b0) and
B(4) = (1 + 2b0, 1 − 2b0), summarized in Table 3.

(1,−1) (−1, 1) parameter conditions
R(1) R(1) p > max{−1 − 2b0,−1 + 2b0}

R(2) R(4) p < −1 + 2b0

R(3) R(3) ×

R(4) R(2) p < −1 − 2b0

Table 3: Convergence study for points (−1, 1) and (1,−1).

Let us note that the parameter conditions are incompati-
ble for certain values of b0. Using the parameter conditions
shown in Table 3, we obtain that input point 2 can converge
to outputs (1, 1), (1,−1) depending on parameters p, b0 (7).
Otherwise for 0 < b0 < 1/2 and p > 0, input point 2 can
only converge to (1, 1).{

B(2) = (1, 1)⇔ p > −1 + 2b0, b0 > 1/2,
B(2) = (1,−1)⇔ p < −1 + 2b0, b0 > 1/2. (7)

Like in the first case, input 3 can not converge to (1,−1)
because there is no solution for the system equations ob-
tained from (4) and B(3) = (1,−1). Finally, input 3 con-
verges to itself for parameters, I = 0 and b+ = b− = 1 − b0.
The other square point B-images are B(2) = (−1 + 2b0, 1 −

- 32 -

2b0) = −B(4) and lay on a boundary line of the conver-
gence map. In this case, we apply a translation to the im-
age points in order to solve B(±1,±1) = (±1 + ε,±1 + ε),
ε ∈ R − {0}.

From the equations obtained, we find parameters I =

ε, b+ = b− = 1 − b0. The other square point B-images
are then B(2) = (−1 + 2b0 + ε, 1 − 2b0 + ε) and B(4) =

(1 − 2b0 + ε,−1 + 2b0 + ε). Using the convergence map,
B(2) = (1, 1) if and only if conditions in (8) are fulfilled.{

±(−1 + 2b0) + ε > −p
1 − 2b0 + ε ≥ 1 − 2b0 − ε⇒ ε ≥ 0 (8)

Parameter conditions are then p > max{±(−1 + 2b0) − ε}.
Doing a similar study for the other convergence regions we
obtain the rest.

Using similar arguments we find all possible output val-
ues for the case where the first input point 1 converges to
itself and p > 0 in Table 4. We use the two row notation
in order to describe the rearrangement of the input-output
relations obtained.

input-output parameter conditions(
1 2 3 4
1 1 1 1

)
p > max{−1 − 2b0,−1 + 2b0}(

1 2 3 4
1 2 1 4

)
0 < p < −1 + 2b0(

1 2 3 4
1 4 1 2

)
0 < p < −1 − 2b0(

1 2 3 4
1 4 3 2

)
0 < p < min{−1 + 2b0 ± ε}(

1 2 3 4
1 2 3 4

)
0 < p < min{1 − 2b0 ± ε}(

1 2 3 4
1 1 3 1

)
p > max{±(−1 + 2b0) − ε}, ε > 0(

1 2 3 4
1 3 3 3

)
p > max{±(−1 + 2b0) − ε}, ε < 0

Table 4: Possible outputs for the case B(1) = (1, 1), p > 0.

Now, from the study of all the direct input-output rela-
tions, we have found 25 possible convergence options with
their correspondent templates. Let’s note that the parame-
ter conditions in order to reproduce a desired input-output
relation, are determined by p and b0. The rest, b+ and b−,
depend in each particular case, on b0. From the different
system equations, parameter I gives us the key point in or-
der to discuss the existence of a solution.

Moreover, composing this different templates, we obtain
all the possible relation between the four points inS using a
two neuron CNN. This relation can be classified with those
converging to one, two, three or four different outputs.

For example, there are four elements Ti, i = 1, . . . , 4
converging to a single output. A template T1 making the
system converge to output 1, can be defined for parame-
ters I = 1, b+ = b− = −b0, p > max{−1 ± 2b0} and
s > 1. Choosing b0 = 2, p = 4 > 3 and s = 3 we find

(s, p, b0, b+, b−, I) = (3, 4, 2,−2,−2, 1). Composing this
template with another one T j where input 1 converges to
2 we obtain T2 = T j ◦ T1.

T2 =

(
1 2 3 4
2 1 4 3

) (
1 2 3 4
1 1 1 1

)
=

(
1 2 3 4
2 2 2 2

)
Let’s note that using these results, a two neuron CNN

can also realize Boolean functions F : R2 → R defined for
example as F(u0, u1) = y0(∞), (u0, u1) ∈ S like in [6]. Us-
ing a single template, linearly separable Boolean funcions
can be solved while for the rest, template composition must
be used.

4. Impossible relations

In the remaining of the paper we shall focus on the only
but bijective input-output relations summarized in Table 5.
From p1 to p8, they are obtained by the action of a single
template except p3 and p8 which come from the composi-
tion of two templates.

inputs p1 p2 p3 p4 p5 p6 p7 p8

1 1 1 2 2 3 3 4 4
2 2 4 1 3 2 4 1 3
3 3 3 4 4 1 1 2 2
4 4 2 3 1 4 2 3 1

Table 5: Cases where the CNN converges to four different
outputs.

In this particular case, pi can be written as permutations
of four different objects: the input points in S.

Remark that we have found only eight bijective relations,
while using four elements S, we should find the set of all
possible permutations, the symmetric group S 4 of 4! = 24
elements. To shed light in the number of different templates
which perform a functional relation between all the four
elements, we compose the eight ones described in Table 5.

Let’s first rewrite the eight permutation templates pi us-
ing the cycle notation, and compose them.

p1 = Id p3 = (12)(34) p5 = (13) p7 = (1432)
p2 = (24) p4 = (1234) p6 = (13)(24) p8 = (14)(23)

(9)
The result of all the composition templates represented by
product permutations is shown in Table 6.

Let’s note that we have found a special subset of group
S 4 that fulfill the group properties, this is a subgroup.

With this results we set a Convergence Lemma. Let’s
consider a two neuron CNN defined by equations (1) where
parameters fulfill s > 1 and p+ = p− = p. Let’s name
S = {(±1,±1)} the four possible output values set where
the CNN can converge. There exist only eight different
cases where the CNN system converges to the four different
outputs S summarized in Table 5.

- 33 -

p1 p2 p3 p4 p5 p6 p7 p8

p1 p1 p2 p3 p4 p5 p6 p7 p8

p2 p2 p1 p7 p8 p6 p5 p3 p4

p3 p3 p4 p1 p2 p7 p8 p5 p6

p4 p4 p3 p5 p6 p8 p7 p1 p2

p5 p5 p6 p4 p3 p1 p2 p8 p7

p6 p6 p5 p8 p7 p2 p1 p4 p3

p7 p7 p8 p2 p1 p3 p4 p6 p5

p8 p8 p7 p6 p5 p4 p3 p2 p1

Table 6: Template composition for all the permutations pi

founded in a two neuron CNN.

One example where we can see this restrictions is try-
ing to implement Minsky’s 7-state 4-color universal Turing
machine illustrated in Figure 2.

Figure 2: Generalization of Minsky’s 7-state 4-color uni-
versal Turing machine made by Macura [4].

We want the two neuron CNN to represent the header
action of the Turing machine on the tape so we shall use
the values ±1 to code the colors. Since a symmetric two
neuron CNN has four possible outputs for s > 1, it can be
used to modify the color of an active cell of the Minsky’s
universal Turing machine. The input color will be coded
on the ui’s while the output color will be obtained from the
final state yi’s of the neurons (Figure 3).

Figure 3: One correspondence between the Turing machine
colors and the four possible states of the 2-neuron CNN.

In this way, each state of the machine corresponds to
a template or to a combination of templates relating the
four possible input symbols to their correspondent output
ones. To design these templates we shall use the conver-
gence map studied before. Taking the fifth state (Figure 2)
which can be written as s5 = (34), we see from the con-
vergence lemma that this case can not be performed using
a two neuron CNN because it is not one of the eight possi-
ble permutations found (9). Of course, this result seem to
depend on the choice between colors and S-points. State
s5 is the only permutation of colors so one may think on

choosing a diferent relation between S-points and the Tur-
ing machine colors to implement the state. However, in all
the cases, the associations fulfilling s5, do no fulfill some
other state si, i , 5, i = 1, . . . , 7, where the system con-
verges to three different outpus. So, a 2-neuron CNN can
not be used to reproduce this header action of the universal
Turing machine.

5. Conclusions

We have seen that a 2-neuron CNN can not perform all
logical bijective function but only a subgroup. The partic-
ular geometry of the convergence map limits the kind of
problems which can be solved yet, allows to classify them
into those converging to one, two, three or four different
outputs. In this way, we may know if a specific problem,
can be solved using a two neuron CNN. In the line of [6],
we have checked that all single-output Boolean functions
can be reproduced. Linearly separable ones, just need one
template while non linearly separable ones require the com-
position of two. We have also seen as an example the prob-
lem to reproduce the header action of the universal Turing
machine.

From [5] we know that a CNN is a universal Turing ma-
chine in higher dimensions. So this leads to the discussion
on which is the minimal CNN being a universal Turing ma-
chine. Moreover, using y0(∞) as output, we can reproduce
any Boolean function just like a universal CNN cell but,
using (y0(∞), y1(∞)) as output we loose universality.

Acknowledgments

This work is financially supported by FUNITEC.

References

[1] L. O. Chua, L. Yang “Cellular Neural Networks: The-
ory,” IEEE transactions on Circuits and systems, vol
35, 1998.

[2] L. O. Chua, “CNN: a Paradigm for Complexity,” World
Scientific, 1998.

[3] X. Vilasis, M. Vinyoles “On cellular neural net-
work learning,” Proceedings of ECCTD, Cork, Ireland,
2005.

[4] Weisstein, Eric W. ”Turing Machine.” From
MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/TuringMachine.html

[5] L. O. Chua, T. Roska, P. Venetianer “The CNN is uni-
versal as the Turing machine, IEEE Trans. Circuits
Syst. I, vol 40, no. 4, pp 289-291, 1993.

[6] Dogaru, R., Chua, L. “Universal CNN cells”,Int. Jour-
nal of Bifurcations and Chaos, vol 9, No 1, pp 1-48
1999.

- 34 -

	Navigation page
	Session at a glance
	Technical program

