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Abstract—A new generation network needs to accom-
modate enormous numbers of nodes with high diversity
and a wide variety of traffic and applications. To achieve
higher scalability, adaptability, and robustness than ever
before, we consider a new network architecture where
all entities behave in a self-organizing manner based on
biologically-inspired nonlinear mathematical models. In
this paper, we show an example of layered self-adaptation
of overlay/sensor networks adopting the attractor composi-
tion model. Simulation results demonstrate potential bene-
fits of our approach.

1. Introduction

In the near future, a considerable number of sensing,
computing, controlling, or other information devices will
be placed, distributed, and embedded within our environ-
ment. They are interconnected and organize themselves as
networks to cooperate with each other in order to provide
information services appropriate for the context, i.e. time,
condition of surroundings, and user’s demand. In such am-
bient information environment, a network would often face
unexpected or unpredictable user behavior, usage of net-
work, and traffic patterns, which were not anticipated at
the time the network was designed or built. Then, it col-
lapses. The conventional network design methodology and
architecture, where structures, functionalities, algorithms,
and control parameters are designed and dimensioned to
achieve their performance based on assumptions on the op-
erating environment and relying on the prepared seems no
longer feasible for new generation networks.

To tackle the problem, in [1] we proposed a framework
for a new network architecture, which was more scalable
to the number of connected nodes and the size of the net-
work, more adaptive to a wide variety of traffic patterns
and their dynamic change, and more robust to expected
and unexpected failures independently of their magnitude
and duration. Our fundamental paradigm is to perform or-
ganization and control of the whole network system in a
distributed and self-organizing manner. In self-organizing
control, each entity, e.g. node and network, decides its
behavior based on local information obtained through ob-
servations and communication with neighboring entities.
Through direct and/or indirect mutual interaction among

entities, global control emerges to provide users and appli-
cations with appropriate network services.

Our scheme to establish the self-organizing network ar-
chitecture is to adopt bio-inspired nonlinear mathematical
models to network control. Biological systems are inher-
ently fully-distributed and autonomous and they are known
to exhibit self-organizing behavior. Swarm intelligence is
a typical example of self-organization [2]. A group of so-
cial insects such as ants, termites, and honey bees often
shows sophisticated and globally organized behavior, e.g.
ant trail, cemetery formation, brood sorting, and division of
labor, which is beyond mere collection of simple behavior
of individuals. Such collective intelligence emerges from
mutual and local interaction among simple agents.

In this paper, we first introduce biological nonlinear
models, i.e. attractor selection and attractor composition
in section 2 and then show an example of layered control
mechanisms adopting an attractor compotision model in
section 3. As a targeted application, we consider data gath-
ering, where an overlay network built over wireless sensor
networks collects sensor data from sensor nodes to a data-
collecting node. Overlay and sensor networks adaptively
self-organize logical and physical topologies to minimize
the data gathering delay in a cooperative manner. In sec-
tion 4, we show some preliminary results of layered adap-
tive control. Finally section 5 summarizes the paper.

2. Bio-inspired Nonlinear Models and Application to
Network Control

The attractor selection model describes non-rule driven
adaptation of E. coli cells to dynamically changing nutrient
conditions in the living environment [3]. A mutant E. coli
cell has a metabolic network consisting of two mutually
inhibitory operons, i.e. chemical reactions, each of which
synthesizes different nutrients. A general formula for dy-
namics of the concentrations of mRNA in cell i is,

d�xi

dt
= f(�xi) × αi + �ηi, (1)

where �xi corresponds to the vector of concentrations of
mRNA. f(�xi) is a function for chemical reaction in the
metabolic network. αi represents the cellular activity such
as growth rate and expresses the goodness of the current
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behavior, i.e. gene expression. �ηi expresses internal and
external noise affecting the cell’s behavior. When the cur-
rent mRNA concentrations are appropriate for the environ-
mental nutrient condition, a cell can grow well and activity
αi becomes high. Consequently, the first term of Eq. (1)
becomes dominant and function f(�xi) controls the behav-
ior of cell. When the nutrient condition changes, activity
αi decreases and the relative influence of the noise term
�ηi becomes dominant. Then, the mRNA concentrations
adaptively change to fit to the new condition. Applying
this model to network control, �xi represents setting of con-
trol parameters or control policies and activity αi, a scalar
metric reflects the goodness of the control, e.g. throughput
or delay. The attractor selection model has been applied
to multipath routing in overlay networks [4] and adaptive
routing in mobile ad-hoc networks [5], where communica-
tion is often affected by the unpredictable dynamic behav-
ior of other sessions and mobility of nodes.

The attractor selection model describes adaptive behav-
ior of a single entity. However, there are multiple entities
in the same shared environment in an actual situation, such
as E. coli cells in a reactor. In the attractor composition
model, entities share the same activity as being formulated
as,

d�xi

dt
= f(�xi) × α + �ηi. (2)

With such coupling, entities can cooperatively optimize the
system, but behavior of an entity directly affects others and
the system could be driven to the unstable condition.

3. Self-Organization Mechnisms in Layered Sensor-
Overlay Networks

In this section, we first explain an application scenario
and then self-organization mechanisms based on the attrac-
tor composition model will be proposed.

3.1. Layered Sensor-Overlay Network

We consider that heterogeneous sensor nodes having dif-
ferent sensing devices are deployed in the monitored re-
gion. An application running over wireless sensor networks
periofically collects sensor data from several sensor nodes,
called source nodes, to a sensor node, called a sink node,
at certain data gathering intervals. Each of data gathering
attempts is called round. A sink node, source nodes, and
the data gathering interval are chosen based on application
requirements without taking into account characteristics of
underlying wireless sensor networks such as topology.

To save energy consumption and prolong the lifetime of
wireless sensor networks, sensor nodes usually adopt sleep
control. They wake up, obtain sensory information and/or
receive messages from neighbors, deposit the obtained data
in a local buffer or send it to a neighbor node toward a des-
tination, and then go back to a sleep mode at regular oper-
ational intervals. Therefore, a message can be transmitted

physical network
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Figure 1: Layered sensor-overlay network

from a sensor node to a neighbor only when both sender
and receiver are awake at the same time. For the sake of
simplicity, in this paper we assume that sensor nodes of
the same intrinsic operational interval are synchronized and
they move between sleep and active states at the same time.

Furthermore, We assume that a message travels from a
sensor node to a destination node on the shortest path in
terms of the number of hops, but the path contains only
sensor nodes which synchronize with each other except for
the last hop. If a sensor node has a destination node as
a neighbor, it directly sends a message to the neighboring
destination when both wake up at the same time.

An image of layered sensor-overlay network is illus-
trated in Fig. 1, where different colors correspond to dif-
ferent intrinsic operational intervals. Arrows in the bottom
network constitute physical paths from source nodes to a
sink node. Solid arrows corresponds to message transmis-
sion between sensor nodes with the same operational inter-
val and dashed arrows corrsponds to message transmission
that causes buffering delay.

3.2. Activity definition

In this paper, we use the average data gathering delay, i.e.
the average time required for messages to reach a sink node
per round, to define the activity. Both of overlay and sensor
networks dynamically adapt the topology to minimize the
data gathering delay. The dynamics of activity is given as,

dα

dt
= ρ(

dmin

davg
− α). (3)

The initial vale is set at 0.5. When messages are received
from all source nodes for round k, the per-round aver-
age data gathering delay d(k) is calculated. Then, the
average data gathering delay davg is derived as an aver-
age of d(k) of the latest Wround rounds, that is, davg =
∑k

i=k−Wround+1 d(i)/Wround. dmin is the minimum of
dmin for the latest Wround rounds. ρ (0 < ρ < 1) is a pa-
rameter which determines the speed of adaptation. A large
ρ makes a system too sensitive to instantaneous fluctuation
and the topology does not become stable. On the other
hand, with too small ρ, it takes long time to find a good
topology.
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3.3. Self-adaptation in Overlay Network

A logical overlay network consisting of a sink node and
several source nodes can take any topology such as star,
tree, clustered, and mesh. In general, it is not trivial for
an application to choose the optimal topology without in-
formation about the physical network topology. However,
the attractor selection model enables an overlay network to
adaptively choose the better or best logical topology.

Following our previous work [5], given N as the number
of topologies that an overlay network has as alternatives,
we formulate the dynamics of state value xi of topology i
(1 ≤ i ≤ N), which gives the preference of topology i, as,

dxi

dt
=

α(βαγ + 1√
2
)

1 + maxx2
j − x2

i

− αxi + ηi. (4)

Initially, state values are all set at zero. At each adapta-
tion timing, an overlay network evaluates the state vec-
tor and chooses the topology with the largest state value.
This function has stable attractors having one high state
value and the others low state values, such as state vec-
tor �x = (x1, . . . , xi, . . . , xN ) = (H, L, . . . , L) and
(L, . . . , H, . . . , L), at the equilibrium. β and γ are parame-
ters which define values H and L. ηi is the white Gaussian
noise with zero mean and variance σ.

3.4. Self-adaptation in Wireless Sensor Network

Heterogeneous sensor nodes have different intrinsic op-
erational intervals depending on their application and de-
vice, e.g. several seconds for location-aware services, sev-
eral minutes for light and temperature control, and several
hours for environmental monitoring. Although accommo-
dating all nodes in a single network allows a message to
move from a source node to a sink node with the smallest
delay, it is only the waste of energy to force nodes of an
hourly operational interval to operate every other second
all the time. Therefore, we need a mechanism for hetero-
geneous wireless sensor networks to be dynamically con-
nected, merged, and seperated if necessary and beneficial.

In our proposal, based on the attractor composition
model, sensor nodes dynamically and adaptively decide
whether to synchronize with other operational intervals
based on the activity. Attractors in this case correspond to
operational intervals to synchronize with. Similarly to the
overlay network adaptation, the dynamics of state value yi

of operational interval i (1 ≤ i ≤ M) among M opera-
tional intervals is formulated as,

dyi

dt
=

α(βαγ + 1√
2
)

1 + max y2
j − y2

i

− αyi + ηi, (5)

At each adaptation timing, a sensor node evaluates the state
vector and chooses an operational interval with the largest
state value to synchronize with in addition to its intrinsic
operational interval. If the intrinsic operational interval has
the largest state value, a sensor node operates only on the
intrinsic operational interval.

4. Simulation Results and Discussion

In this section, we show some simulation results and dis-
cuss the behavior of layered adaptive control.

4.1. Simulation Setting

We randomly distributed 150 sensor nodes in 200×200
square meter region and the wireless communication range
was set at 25 meters. Intrinsic operational interval of each
sensor was randomly chosen among 5, 10, and 15 minutes.
We eliminated node layouts in which sensor nodes of the
same group could not form a connected network.

An overlay network consisted of one randomly chosen
sink node and four randomly chosen source nodes. Among
all 256 logical topologies which could be constructed
among five nodes, only those physically connected, on av-
erage about 100, were considered as alternatives. The data
gathering interval was set at 10 minutes. Through a simu-
lation run, there was only one overlay network.

We compare four different scenarios, i.e. Static, ON,
WSN, and ON+WSN, depending on whether adaptive con-
trol is performed or not. As parameters of the attractor se-
lection, β and γ are set at 50 and 3 respectively [5]. The
adaptation rate ρ and the noise intensity σ were set at 0.1
and 0.01 respectively. We set Wround at 10. Averaged values
of 100 runs of 10000 minutes are shown.

4.2. Simulation Results

First, we show the transient behavior of layered adapta-
tion control in Figs. 2 through 4, where the adaptation in-
terval of overlay network, denoted as ION is 500 minutes,
and that of wireless sensor networks IWSN ranges from 50
to 150 minutes. The figures are generated from one set of
simulation runs, where the same random seed was used in
all four scenarios.

In Fig. 2, the average data gathering delay davg fluctu-
ates even in the case of Static. This is because that the data
gathering interval is determined independently from oper-
ational intervals of sensor nodes. Messages are sometimes
forced to wait until both of a sensor node holding the mes-
sage and a receiver node wake up at the same time. In some
cases, multiple messages are sent at once due to buffering.

Although ON alone cannot effectively decrease the de-
lay, ON+WSN leads to the minimum delay as a combina-
tion in Fig. 2. In the case of ON and ON+WSN, an overlay
network looks for and finds a logical topology leading to
the smaller delay as shown in Fig. 3 where y-axis shows an
identifier of logical topology. In both cases, an overlay net-
work stays at a certain attractor after about 1000 minutes.
The activity reaches sufficiently high level to keep the sys-
tem stable with small perturbation as shown in Fig. 4.

Next, we investigate the mutual effect of the adaptation
intervals. Intuitively, the adaptation interval of wireless
sensor networks must be larger than the data gathering in-
terval and smaller than that of an overlay network, so that
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Figure 2: Average data gathering delay
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Figure 3: Logical topology
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Figure 4: Activity

Table 1: Influence of adaptation intervals
ION

IWSN 10 min 100 min 500 min
avg 3.89 3.42 3.46

5–15 min var 0.58 0.64 0.62
avg 3.62 3.41 3.39

50–150 min var 1.30 1.32 1.60
avg 3.54 3.65 3.32

250–750 min var 2.70 3.25 3.47

each network can evaluate the goodness of attractor.
Results of evaluation of various combinations of ION

and IWSN are summarized in Table 1. Table 1 indicates that
the best combination of adaptation intervals is ION =500
minutes and IWSN =250–750 minutes in regard to the aver-
age data gathering delay. Another finding is that the larger
adaptation interval especially in wireless sensor networks
lead to larger fluctuation in the average data gathering de-
lay. A reason for this is that, with late and intermittent
adaptation, sensor nodes abruptly change their synchro-
nization reacting major changes in the data gathering delay
caused by previous adaptation. We will investigate their
mutual effect in more detail as the next step of research.

5. Conclusion

In this paper, we proposed layered self-adaptation con-
trol based on the attractor composition model and evaluated
the performance and mutual effect. We furtner need to in-
vestigate detailed behavior of mutual interaction and then
we plan to evaluate the robustness, adaptability, and stabil-
ity of the layered adaptation. We believe that a small-scale

disruption can be hidden from an upper layer by local adap-
tation in a lower layer by layered adaptation control, which
leads to high robustness and stability.
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