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Abstract—An annealing for global optimization on dis-
crete time cellular neural network (DT-CNN) with additive
noise is investigated. In our method the additive noise is
generated using chaotic behavior of class 3 cellular au-
tomata (CA). The optimization with our method shows
higher performance than with uniform random noise. In
this paper we investigate the relation between our method
and chaos annealing, which is another superior optimiza-
tion method with neural network. The auto-correlations of
the CA noise and logistic map, which is often used in chaos
annealing, are evaluated, and we can see the similarity of
both systems. The annealing performances are also eval-
uated, and the results with the CA noise and logistic map
show both methods exhibit higher performances under the
same condition. These results may suggest that the CA
noise and logistic map have common basis and it makes
the ability of global search high.

1. Introduction

Combinatorial optimization problems arise in a lot of
scientific and technological fields. In this paper we investi-
gate a global optimization with discrete time cellular neural
network (DT-CNN).
Many researches apply the optimization on DT-CNN to

various problems to date. One of examples is solving min-
imization problem of spin glass energy by DT-CNN [2].
In statistical physics, with the Ising model [3] the mini-
mization problem of spin glass energy is formulated as a
quadratic assignment problem which is an NP-hard prob-
lem. This formulation has the same structure of Lyapunov
function of DT-CNN, so this can be solved by DT-CNN.
In recent years the Ising model is applied in probabilistic
information processing [4], and in some applications this
method achieves great success. Therefore solving this class
of problems is paid much attention from the image process-
ing field. Another example is an image coding and decod-
ing [5]. The image coding and decoding are formulated as
an optimization problem and are solved by DT-CNN.
The drawback of the optimization with DT-CNN is that

in many cases the state of the network is trapped at a local
minimum, and thus a global solution can not be found. To
overcome this difficulty we proposed an annealing method

on a DT-CNN that realizes global optimization [6, 7]. In
this scheme, noise is induced into network dynamics then
gradually reduced. In this process, the state of the network
is initially random but eventually becomes convergent. Due
to the randomness of the noise, the network escapes from
local minima.
In previous work [8] we proposed a hardware-oriented

method of noise generation. The noise is generated using
the chaotic behavior of class 3 cellular automata (CA) [1]
on Cellular AutoMata on Content Addressable Memory
(CAM2). CAM2 is a dedicated hardware for CA and
CNN [9, 10], so that the noise can be generated easily. We
also showed the annealing performance with the noise gen-
erated by chaotic behavior of CA (CA noise) is superior to
that with uniform random noise [7].
Preceding studies reported that the Hopfield Neural Net-

work with the chaotic noise as the additive noise increases
the optimization ability [11, 12]. It was pointed out that
this ability relates to the auto-correlation of the chaotic
noise [13, 14]. Hasegawa and Umeno showed the noise
with auto-correlation which has negative auto-correlation
at first data lag and gradually decays has high solving abil-
ity of minimization [14]. Our system also uses the chaos
of class 3 CA, and so the CA noise may have the common
property which the chaos noise has.
In this paper we take up logistic map as a representa-

tion of chaos, and investigate whether both our method and
logistic map have common statistical property. The auto-
correlation of the CA noise is compared with that of logis-
tic map. The performance of annealing is also compared
CA noise and logistic map.

2. Noise Induced DT-CNN Model

DT-CNN is a temporally discretized CNN. The DT-CNN
consists of an M × N rectangular array of cells C(i, j),
i = 1, 2, . . . ,M, j = 1, 2, . . . ,N. These cells have three
variables ui, j, xi, j and yi, j, denoting input, state and output,
respectively. The dynamics of the DT-CNN takes the fol-
lowing form:

xi, j(t + 1) =
∑

C(k,l)∈Nr (i, j)
A(i, j; k, l) yi, j(t)
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+
∑

C(k,l)∈Nr (i, j)
B(i, j; k, l) ui, j + I (1)

yi, j(t) =
1
2

(
|xi, j(t) + 1| − |xi, j(t) − 1|

)
(2)

where Nr(i, j) is a set of neighborhood cells and A(i, j; k, l)
and B(i, j; k, l) are parameters called templates. I is also a
parameter called the threshold value.
We can define the Lyapunov function E(t) of the DT-

CNN as follows [15].

E(t) =
1
2

∑
(i, j)

y2i, j(t)

−1
2

∑
(i, j)

∑
(k.l)

A(i, j; k, l) yi, j(t) yk,l(t)

−
∑
(i, j)

∑
(k.l)

B(i, j; k, l) yi, j(t) uk,l

−
∑
(i, j)

I yi, j(t) (3)

State xi, j changes as the Lyapunov function decreases and
converges at one of the local minima. In order to obtain
the global minimum, hardware annealing on the DT-CNN
is performed using a DT-CNN with noise. The dynamics of
the DT-CNN with noise is defined as the following form:

xi, j(t + 1) =
∑

C(k,l)∈Nr (i, j)
A(i, j; k, l) yi, j(t)

+
∑

C(k,l)∈Nr (i, j)
B(i, j; k, l) ui, j + I

+a(t) ni, j(t) (4)

a(t + 1) = (1 − δ) a(t) (0 < δ < 1) (5)

ni, j is the noise in cell C(i, j). The range of ni, j is [−1, 1).
The amplitude of noise is controlled by a(t), which de-
creases exponentially in accordance with Eq. (5). δ con-
trols the speed of damping.
Noise is added to the dynamics of the DT-CNN to search

for a global minimum. Since state xi, j fluctuates randomly
in the presence of noise, escaping from local minima be-
comes possible. As the noise becomes smaller, the state
of the DT-CNN becomes stable at an optimal minimum or
suboptimal minima.

3. Noise Generator

To implement the DT-CNN with noise on hardware, a
generating system of noise ni, j is required. We propose the
use of two-dimensional CA as a noise generator [8]. CA
are computational models proposed by Neumann [1] and
consist of lattice-shaped cells. Since the architecture of CA
is similar to that of the DT-CNN, we can implement CA
on a universal CNN machine, CAM2. Figure 1 shows the

DT-CNN Layer

CA Layer

Noise

Figure 1: Hardware annealing on DT-CNN

8 bit

Cellular
Automaton

Noise

Figure 2: Noise generator

concept of the DT-CNN with noise, which has two layers:
a DT-CNN layer and a CA layer.
The states of the cells vary on the basis of the state tran-

sition function F, which is determined by the rule number
R as follows:

R =
N∑
n=0

1∑
vi, j=0

F(vi, j, n) × 2vi, j+2n (6)

where vi, j is the state of cell (i, j) and takes binary values, n
is the number of neighborhood cells with state vi, j equal to
1 and N is the total numbers of neighborhood cells. Wol-
fram [1] sorted state transition functions into four classes.
The functions in class 3 have chaotic behavior. Since we
require disordered noise, we use CA in class 3 as the noise
generator. In this paper, R = 143954.
We generate noise ni, j from the CA as follows.

ni, j(t) =
(vi−1, j−1
28

+
vi−1, j
27
+
vi−1, j+1
26

+
vi, j−1
25

+
vi, j+1
24
+
vi+1, j−1
23

+
vi+1, j
22
+
vi+1, j+1
21

)
× 2

− 1 (7)

The range of ni, j is [−1, 1). Figure 2 shows the process by
which the noise is generated.

4. Auto-correlation of CA noise

Hasegawa et al. [13] analyzed which characteristic of
the chaos affects on the annealing performance using sur-
rogates. From their experimental results, the noise which
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Figure 3: Autocorrelation

preserves the auto-correlation of chaotic noise exhibits high
solving ability. This shows that temporal structure of the
chaos affects on the annealing performance. We analyze
the auto-correlation of CA noise and investigate whether
CA noise has the same temporal structure as logistic map.
The auto-correlation of time-series {x0, x1, · · ·} is defined

as Ak = E[(x0−μ)(xk−μ)], where k is a time-shift from orig-
inal data. Figure 3 shows the auto-correlation of CA noise.
In Fig. 3 the auto-correlations of logistic map and uniform
random number are also depicted. The auto-correlation of
uniform random number is 0 at k � 0, because there is
no correlation among the time series of the random num-
ber. On the other hand, in the logistic map, the correlation
coefficients at k = 1 is negative and it gradually decays.
Hasegawa and Umeno pointed out that this characteristic
shape of the auto-correlation makes the solving ability of
optimization high [14].
The auto-correlation of CA noise also takes negative

auto-correlation coefficient at k = 1. That feature is similar
with logistic map, but the auto-correlation decays so fast
that the coefficients is nearly equal to zero at k ≥ 2.

5. Annealing with CA noise and logistic map

We use three types of noise sources, namely, CA noise,
logistic map and uniform random number, as the noise in
Eq. (4). In this experiment we use the following templates.

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.0 1.0 0.0
1.0 3.0 1.0
0.0 1.0 0.0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , B =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 0.0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , I = 0
(8)

The input variable u is randomly generated within
[−U,U] to create various problems, where U is the range
of random numbers. We apply our model (Eq.(4)) on DT-
CNN with cell size of 100 × 100.
Figure 4 is the result of the 100 trials with various initial

conditions, and in this case U is equal to 1. The x axis is

the serial number for the trials and the y axis is the con-
vergent energy of the network. In Fig. 4 the green, red
and blue lines show the result of the annealing with the CA
noise, logistic map and uniform random number, respec-
tively. This results show in CA noise and logistic map the
100 trials converge to one solution and these convergent en-
ergies with two methods are exactly same. We also tried to
solve the same problem in GA, but we could not find bet-
ter solution than this. Comparing with the uniform random
number, CA noise and logistic map find the better solution
in all 100 trials.

We change the parameter U into 4, and the experimental
results by this parameter show in Fig. 5. In Fig. 5, the re-
sults using the CA noise and logistic map do not show the
convergency into one solution. In all 100 trials, the conver-
gent energies with the CA noise and logistic map are worse
than that with the random noise.

Randomly generating the input variable u within the
range of [−U,U], we also try the same evaluation on the
100 various problems. When U is equal to 1, in the all
problems, the annealing results with the CA noise and lo-
gistic map show the convergence to one solution, and they
obtain better solution than the random number. On the
other hand, when U = 4, in all problems, the convergence
to one solution does not reveal, and the random number ob-
tains better solutions than the CA noise and logistic map.

We summarize the above results. When U is equal to
1, the annealing with both the CA noise and logistic map
shows higher performances than with the uniform random
number. In the case with the CA noise and logistic map, the
network converges to exact one solution in all trials from
100 initial conditions. As U changes into 4, the annealing
performances with the CA noise and logistic map degrade.
Their performances are worse than the random number.

The results with the CA noise and logistic map show the
same tendency in annealing performance. That may sug-
gest that they have the common basis and it makes solving
ability higher.

6. Conclusion

From our analyses the CA noise has some common na-
tures with logistic map. Firstly, the auto-correlation coeffi-
cient of the CA noise takes negative value at the first time
lag. Logistic map also has this shape of the auto-correlation
and the noise which takes this shape of auto-correlation has
high ability of global search. Secondly, both the CA noise
and logistic map reveal high performances of DT-CNN an-
nealing under the same condition. This may suggest the
common principle of both systems makes the ability of
global search high.
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Figure 4: Convergent energy in the case ofU = 1 (Cell size
= 100 × 100)

-40600

-40400

-40200

-40000

-39800

-39600

-39400

 0  10  20  30  40  50  60  70  80  90  100

E
ne

rg
y

Trial

Figure 5: Convergent energy in the case ofU = 4 (Cell size
= 100 × 100)
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