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Abstract—We suggest an architecture (i.e., node dy-
namics, connection topology, and coupling functions) iden-
tification method using pinning control to dynamical net-
works with unknown time-varying interaction-delays. The
architecture identification method is illustrated with a cel-
lular neural network.

1. Introduction

The research on complex networks of interacting dynam-
ical systems [1] has rapidly attracted increasing interest in
emerging cooperative phenomena of various real networks
such as neurons, interacting genes, power stations, or cou-
pled nonlinear oscillators. Current studies in this filed fo-
cused on how the topology properties of the network (such
as clustering coefficient, connectivity distribution, and av-
erage network distance) influence the cooperative dynamic
behavior (e.g., network synchronization) [2]. However the
inverse problem – how to uncover network architecture
(NA) (including node dynamics, connection topology, and
coupling functions) from the dynamic evolution – has not
been well understood [3] and is very important for analysis
of real networks. In this paper, we show that controlled net-
work steady state responses can be applied to identify NA
of dynamical networks. Our previous method [3] is not ap-
plicable to estimate node dynamics and coupling functions
and can be used for detecting only the connection topology
of networks under the assumption that the node dynamics
and coupling functions are known precisely.

We analyze a network of interacting dynamical systems,

ẋi = f i(xi) +
∑

j∈V, j,i

ai j[h j(x j,τi j ) − hi(xi)] (1)

where i ∈ V (V := {1, 2, . . . , n} is the set of vertices),
xi = [xi, yi, . . .]T ∈ IRN is the state vector of node i,
f i : IRN → IRN describes the local dynamics of node i,
and h j : IRN → IRN is the coupling function of node j.
For generality we also include some interaction delay τi j(t)
which is a function of time and concerns the coupling from
node j to i, with x j,τi j (t) := x j(t − τi j). The parameters ai j

are elements of the adjacency matrix A = (ai j) describing
the topology of the network connections (with ai j = 1 if
the node j is driving node i, and ai j = 0 otherwise). The
pinning control problem of the network is described as

ẋi = f i(xi) +
∑

j∈V, j,i

ai j[h j(x j,τi j ) − hi(xi)] + ui (2)

where i ∈ V and ui are control signals to be designed.
Previous pinning control methods (cf. [4, 5]) are not ap-

plicable to identify the NA and always assume that: i) all
nodes are identical (that is, f i = f j = f for all i, j) and
without interaction-delay (that is, τi j = 0 for all i, j). How-
ever, in this paper, we suggest a new form ui = −θi(xi− x̂is)
for the control signal. By choosing large enough gains θi,
the network is driven to a steady state that is determined by
θi and x̂is. Interestingly, we found that when proper x̂is are
chosen, the controlled steady state responses can be applied
for uncovering the NA of the network.

2. Theory

For simplicity we consider a network of 1D oscillators
with scalar states xi and local node dynamics fi : IR → IR.
We assume that fi(0) = 0 and hi(0) = 0 for all i; and
the mappings fi and hi are Lipschitzian, that is, there ex-
ist positive constants L1i and L2i such that | fi(yi) − fi(xi)| ≤
L1i|yi− xi| and |hi(yi)−hi(xi)| ≤ L2i|yi− xi|, for all i. Further-
more we assume for the unknown interaction delays τi j that
there exist positive Tdi j and δi j such that 0 ≤ τi j(t) ≤ Tdi j

and τ̇i j(t) ≤ δi j < 1, for all i, j. The pinning control prob-
lem of the network is given by

ẋi = fi(xi) +
∑

j∈V, j,i

ai j[h j(x j,τi j ) − hi(xi)] + ui, (3)

where ui are control signals to be designed.

2.1. Driving the network to steady-state

The following theorem (its proof is omitted for compact-
ness) gives the rules to design the control signal for driving
the network to steady-states.

Theorem 1 – When ui has the form

ui = −θi(xi − x̂is), (4)

with constant x̂is freely chosen and

θi > max[γi, ρi] (5)

wherein γi := L1i + Din
i + 1

2 Din
i L2

2i +
Dout

i
2(1−δmax

i j ) L2
2i and ρi :=

4L1i + (4Din
i + 2Dout

i )L2i + 2
∑

j∈V, j,i ai jL2 j, the network (3)
is driven to steady states (x1s, x2s, . . . , xns), satisfying

∑

j∈V, j,i

ai j[h j(x js)−hi(xis)] = θi(xis− x̂is)− fi(xis),∀i ∈ V (6)
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and

|xis| ≤
√

2θmax

θmin

∑

k∈V
x̂2

ks, ∀i ∈ V (7)

with Din
i :=

∑
k∈V,k,i aik, Dout

i :=
∑

k∈V,k,i aki, δmax
i j :=

maxi, jδi j, θmin := minkθk, and θmax := maxkθk.

2.2. Detecting network connection topology

We now show how to use the steady state equation set
(6) in Theorem 1 to estimate the elements of the adjacency
matrix A = (ai j). We conclude from Eq. (6) that

xis − x̂is = ψi/θi,∀i ∈ V (8)

where

ψi :=
∑

j∈V, j,i

ai j[h j(x js) − hi(xis)] + fi(xis),

which in combination with Eq. (7) and the Lipschitzian
properties of fi and hi implies that

|ψi| ≤
[
L1i +

∑

j∈V, j,i

ai j(L2 j + L2i)

]√
2θmax

θmin

∑

k∈V
x̂2

ks. (9)

On the other hand, Eq. (6) also indicates that for all i ∈ V ,
∑

j∈V, j,i

ai j[h j(x̂ js)−hi(x̂is)] = θi(xis− x̂is)− fi(x̂is)+∆i, (10)

wherein

∆i :=
∑

j∈V, j,i

ai j[h j(x̂ js) − h j(x js) − hi(x̂is) + hi(xis)]

+ fi(x̂is) − fi(xis), (11)

satisfying

|∆i| ≤
∑

j∈V, j,i

ai j(L2 j|x̂ js − x js| + L2i|x̂is − xis|)

+L1i|x̂is − xis|
≤

∑

j∈V, j,i

ai j(L2 j|ψ j|/θ j + L2i|ψi|/θi) + L1i|ψi/θi|

≤
[
L1i +

∑
j∈V, j,i ai j(L2 j + L2i)

]
·maxk∈V |ψk |

θmin

≤ Ω2
max

θmin

√
2θmax

θmin

∑

k∈V
x̂2

ks =
Ω2

max

√∑
i x̂2

is√
θ3

min/(2θmax)
(12)

where the first step has used the Lipschitzian properties of
fi and hi, and

Ωmax := maxi∈V


[
L1i +

∑

j∈V, j,i

ai j(L2 j + L2i)

]. (13)

Equation (12) results in |∆i| ≈ 0 when large enough gains
θi are used such that

θ3
min/(2θmax) � Ω4

max

∑

i

x̂2
is (14)

where Ωmax is given by (13).
In this case, Eq. (10) actually leads to

∑

j∈V, j,i

ai j[h j(x̂ js) − hi(x̂is)] ≈ θi(xis − x̂is) − fi(x̂is),∀i. (15)

For any j, we set x̂ks as:

x̂ks =

{
δ j, for k = j,
0, otherwise

(16)

which in combination with hi(0) = 0 implies that for all
i ∈ V\{ j},

hk(x̂ks) − hi(x̂is) =

{
β, for k = j,
0, otherwise

(17)

where δ j is chosen such that β := h j(δ j) , 0.
Substituting Eqs. (16) and (17) into Eq. (15) leads to

ai jβ ≈ θixis, ∀i ∈ V\{ j} (18)

where fi(0) = 0 for all i are used. This indicates

ai j ≈ θixis/β (19)

for any i ∈ V\{ j}. It follows that when conditions (5) and
(14) are satisfied, the driving connections of any node j can
be estimated by the following equation

âi j = Ξ

[
θixis

β

]
, ∀i ∈ V\{ j} (20)

where the operation Ξ(y) =

{
1, for y ≥ 0.5
0, for y < 0.5

is used for

rounding the element y to the nearest integers in the set
{0, 1} because the right-hand side (RHS) of (19) in general
is a real number. Hence, either 0 or 1 is finally fixed for âi j.

That β = h j(δ j) in Eq. (20) is known a priori is really a
restriction in practice. We now show that this drawback can
be removed by using a β-estimator that approximates βwith
high accuracy. Indeed, if node j is not isolated, then there
exists k ∈ V\{ j} such that ak j = 1. In this case, Eq. (18)
indicates that β can be estimated by the following equation

β̂ = θk xks, (21)

where β̂ is an estimation of true β (in practice one calcu-
lates θwxws for all w ∈ V\{ j} and chooses any w as k and
β̂ = θwxws if θwxws does not approximate to zero). This in
combination with Eq. (20) implies

âi j = Ξ

[
θixis

β̂

]
, ∀i ∈ V\{ j} (22)

which indicates that an improved driving connection esti-
mation method has been suggested.
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2.3. Estimating node dynamics

We now show that the steady state response equation
set (6) can be extended to estimate node dynamics of bal-
anced1 networks. It is easy to verify that

∑

i∈V

∑

j∈V, j,i

ai j[h j(x js) − hi(xis)]

=
∑

i∈V

∑

j∈V, j,i

ai jh j(x js) −
∑

i∈V
hi(xis)

( ∑

j∈V, j,i

ai j

)

=
∑

j∈V
h j(x js)

( ∑

i∈V,i, j

ai j

)
−

∑

j∈V
h j(x js)

( ∑

i∈V,i, j

a ji

)

=
∑

j∈V
h j(x js)

( ∑

i∈V,i, j

ai j −
∑

i∈V,i, j

a ji

)
= 0, (23)

where the last step has used the property of balanced net-
works. This indicates that summing Eq. (6) over i yields

0 =
∑

i∈V
[θi(xis − x̂is) − fi(xis)]

=
∑

i∈V
[θi(xis − x̂is) − fi(xis) + fi(x̂is) − fi(x̂is)].

It follows
∑

i∈V
fi(x̂is) =

∑

i∈V
[θi(xis − x̂is) − fi(xis) + fi(x̂is)].

When the Lipschitzian property of fi and θi � L1i are used,
this implies

∑

i∈V
fi(x̂is) ≈

∑

i∈V
θi(xis − x̂is). (24)

For any given i, we set x̂ks = 0 for k , i such that in the
summation in the left-hand side (LHS) of Eq. (24) there
remains only the item fi(x̂is) and thus obtain

f̂i(x̂is) = θi(xis − x̂is) +
∑

k∈V,k,i

θk xks, (25)

where f̂i is an estimation of fi. Using fitting methods, we
can thereby achieve f̂i to approximate fi with any precision
when x̂is is gradually changed with a small enough rate in
a desired range.

2.4. Estimating coupling functions

Equation (18) actually reads

ai jh j(δ j) ≈ θixis, ∀i ∈ V\{ j}. (26)

If the node j is not isolated, then there exists k ∈ V\{ j} such
that ak j = 1. In this case, Eq. (26) indicates

ĥ j(δ j) ≈ θk xks, (27)

1For all i,
∑

k∈V,k,i aik =
∑

k∈V,k,i aki. All symmetric networks are bal-
anced.
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Figure 1: True ai,9 (+) and its estimations using true β (◦) as
well as using β-estimator (∆) before rounding for all i , 9.
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Figure 2: True f4(x) (—) for x ∈ [−2, 2] and its approxima-
tion f̂4(x) (4) in discrete points.

where ĥ j is an estimation of h j (in practice one first cal-
culates θwxws for all w ∈ V\{ j} and then chooses any w
as k and ĥ j(δ j) = θwxws if θwxws does not approximate to
zero). By using fitting methods, we can thereby approxi-
mate h j with any precision when δ j is gradually changed
with a small enough rate in a desired range.

Remark: For sparsely connected networks, the condi-
tions (5) and (14) can easily be fulfilled because most el-
ements ai j are zero. This implies that the topology detec-
tion method works very well for regular networks, small
networks [6], local coupling networks and modular net-
works. Following similar steps as for the 1D case, one can
identify connection topology, individual node dynamics,
and coupling functions of dynamical networks with high-
dimensional elements.
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3. Examples

To illustrate our method, we consider a Cellular Neu-
ral Network (CNN) of 1D cells [7], where hi(xi) = (1 −
e−2ηi xi )/(1 + e−2ηi xi ) and

fi(xi) :=


−ν1ixi, for xi < α1i,
ν1ixi − 2ν1iα1i, for α1i ≤ xi ≤ α2i,
−ν2ixi − 2ν1iα1i + (ν1i + ν2i)α2i, for xi > α2i.

In the following, we assume that ηi, α1i, α2i, ν1i, ν2i and τi j

are uniformly distributed in [0.5, 2], [0.1, 0.3], [0.7, 0.9],
[0.2, 0.4], [0.4, 0.8], and [0, 1], respectively. We show the
typical results for small-world network model [6], which
is constructed by the following rules: (I) Start with a
m-nearest-neighbor coupled regular network and assume
1 < m << n; and (II) Add a new long-range edge into the
network with probability 0 < p << 1 between randomly
chosen pairs of nodes. We set n = 50, m = 4, and p = 0.1.

Setting x̂ks chosen as in (16) with δ j = 2, we can deter-
mine the driving connections of any node j from Eq. (20)
when β = h j(δ j) is known, or from Eq. (22) when h j(δ j) is
unknown and β-estimator (21) is used. Figure 1 shows the
comparative results of the driving connections estimated
for node j = 9 as a representative node by using true β and
β-estimator, respectively. The true values for ai,9(i , 9) are:
ai,9 = 1 when i = 5, 7, 8, 10, 11, 27, 32, and ai,9 = 0 other-
wise. Then it is easy to see from Fig. 1 that both Eq. (20)
and Eq. (22) can identify correctly the driving connections
of node j = 9.

We can estimate any node dynamics fi from Eq. (25)
when x̂is is gradually changed with a small enough step
rate in a desired range. As a typical result Fig. 2 shows the
node dynamics estimation for the node i = 4 when x̂is starts
from -1 and increases with rate 0.1 per step. Similarly one
can achieve estimated node dynamics in any given range
[a, b] with high accuracy.

Finally we show the coupling function estimation using
Eq. (27) wherein δ j is gradually changed with a small
enough step rate in a desired range. As a representative
example Fig. 3 shows the coupling function estimation for
the node j = 3 when δ j starts from -2 and increases with
rate 0.1 per step. One can similarly obtain estimated output
functions in any given range [a, b] with high accuracy.

4. Conclusions

We suggested a pinning control based method for iden-
tifying the architecture of dynamical networks with un-
known time-varying interaction delays. This architecture
identification method can be applied to: i) better under-
stand and predict the cooperative dynamic behavior and
emerging functions of dynamical networks; ii) detect net-
work ”fault” caused by the network architecture; and iii)
perturb the connection topology, coupling functions, or
node dynamics for regulating the cooperative dynamic be-
havior and functions of networks as desired.
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Figure 3: True h3(x) (—) for x ∈ [−2, 2] and its approxi-
mation function ĥ3(x) (4) in discrete points.
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