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Abstract—We suggest an architecture (i.e., node dy-
namics, connection topology, and coupling functions) iden-
tification method using pinning control to dynamical net-
works with unknown time-varying interaction-delays. The
architecture identification method is illustrated with a cel-
lular neural network.

1. Introduction

The research on complex networks of interacting dynam-
ical systems [1] has rapidly attracted increasing interest in
emerging cooperative phenomena of various real networks
such as neurons, interacting genes, power stations, or cou-
pled nonlinear oscillators. Current studies in this filed fo-
cused on how the topology properties of the network (such
as clustering coefficient, connectivity distribution, and av-
erage network distance) influence the cooperative dynamic
behavior (e.g., network synchronization) [2]. However the
inverse problem — how to uncover network architecture
(NA) (including node dynamics, connection topology, and
coupling functions) from the dynamic evolution — has not
been well understood [3] and is very important for analysis
of real networks. In this paper, we show that controlled net-
work steady state responses can be applied to identify NA
of dynamical networks. Our previous method [3] is not ap-
plicable to estimate node dynamics and coupling functions
and can be used for detecting only the connection topology
of networks under the assumption that the node dynamics
and coupling functions are known precisely.

We analyze a network of interacting dynamical systems,
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where i € V (V = {1,2,...,n} is the set of vertices),
Xi = [X.Vi....]T € RN is the state vector of node i,
f, : RN — RN describes the local dynamics of node i,
and hj : RN — RN is the coupling function of node j.
For generality we also include some interaction delay j(t)
which is a function of time and concerns the coupling from
node j to i, with Xj,(t) := X;j(t — 7). The parameters a;;
are elements of the adjacency matrix A = (a;j) describing
the topology of the network connections (with a;; = 1 if
the node j is driving node i, and a;; = O otherwise). The
pinning control problem of the network is described as

Xi = fi(Xi) + Z aij[h,-(x,-,m) - hi(Xi)] + Uj (2)

Vi

where i € V and u; are control signals to be designed.

Previous pinning control methods (cf. [4, 5]) are not ap-
plicable to identify the NA and always assume that: i) all
nodes are identical (that is, f; = f; = f for all i, j) and
without interaction-delay (that is, 7j; = 0 for all i, j). How-
ever, in this paper, we suggest a new form u; = —6;(X; — Xis)
for the control signal. By choosing large enough gains 6;,
the network is driven to a steady state that is determined by
6; and Xis. Interestingly, we found that when proper Xis are
chosen, the controlled steady state responses can be applied
for uncovering the NA of the network.

2. Theory

For simplicity we consider a network of 1D oscillators
with scalar states x; and local node dynamics fi : R — R.
We assume that f;(0) = 0 and h;j(0) = 0 for all i; and
the mappings f; and h; are Lipschitzian, that is, there ex-
ist positive constants Ly and Ly such that |fi(yi) — fi(xi)| <
Lailyi — xil and |hi(yi) — hi(xi)| < Lailyi — xil, for all i. Further-
more we assume for the unknown interaction delays 7;; that
there exist positive Tgij and ¢;; such that 0 < 7jj(t) < Taij
and 7jj(t) < ¢6;; < 1, for all i, j. The pinning control prob-
lem of the network is given by

Xio= fi(xi)+ Z aij[hj(Xjr;) — hiCx)l + ui, - (3)
jev.j#i
where u; are control signals to be designed.
2.1. Driving the network to steady-state

The following theorem (its proof is omitted for compact-
ness) gives the rules to design the control signal for driving
the network to steady-states.

Theorem 1 — When u; has the form

—6i(Xi — Kis), 4)

with constant X5 freely chosen and

u =

6 > max[yi, pi] 5)
; . in , 1ping 2 DM 2 .
wherein y; 1= Ly + D" + 5D{"L5; + mLm and p; =
. 1
4Ly + (4D + 2D Ly; + 2 3 jev, ji @ijL2j, the network (3)
is driven to steady states (Xis, X2s, . . - , Xns), Satisfying
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2.2. Detecting network connection topology

We now show how to use the steady state equation set
(6) in Theorem 1 to estimate the elements of the adjacency
matrix A = (a;j). We conclude from Eq. (6) that

Xis—Xis = yi/6,VieV 8
where

vi = Z aij[h;j(xjs) = hi(xis)] + fi(xis),

jeV.j#i

which in combination with Eq. (7) and the Lipschitzian
properties of fj and h; implies that

gmax Z X
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On the other hand, Eq. (6) also indicates that for all i € V,
Z aij[hj(Rjs) —hi(Xis)] = 6i(xis = Ris) = fi(Ris) + Ai,  (10)

JeV,j#i
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wherein
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+fi(%is) — fi(Xis), (11)
satisfying
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where the first step has used the Lipschitzian properties of

f; and h;, and
}. (13)

0 when large enough gains

Li + Z ajj(Loj + Lai)
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Qmax = maxiev{
Equation (12) results in |Aj| ~
; are used such that

m/(zgmax) > Qmax |25 (14)

where Qnax IS given by (13).
In this case, Eq. (10) actually leads to

7 ;%) = hi(Ris)] = 6:(%is = %is) = fi(%is), Vi. (15)
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For any j, we set X as:

n { oj,
XkS = O

which in combination with h;(0) = 0 implies that for all
e V\{j},

fork = j,

otherwise (16)

fork = j,

otherwise n
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where ¢; is chosen such that 8 := h;(d;) # 0.
Substituting Egs. (16) and (17) into Eq. (15) leads to

aijB = bixis, VieV\{j} (18)
where f;(0) = O for all i are used. This indicates
aij ~ biXis/B (29)

forany i € V\{j}. It follows that when conditions (5) and
(14) are satisfied, the driving connections of any node j can
be estimated by the following equation

&j = E[aixis], Vi e V\{j} (20)
B
where the operation Z(y) = é ]:g: ;’ i 82 is used for

rounding the element y to the nearest integers in the set
{0, 1} because the right-hand side (RHS) of (19) in general
is a real number. Hence, either 0 or 1 is finally fixed for &;.
That 8 = hj(6;) in Eq. (20) is known a priori is really a
restriction in practice. We now show that this drawback can
be removed by using a 8-estimator that approximates 8 with
high accuracy. Indeed, if node j is not isolated, then there
exists k € V\{j} such that axj = 1. In this case, Eq. (18)
indicates that 8 can be estimated by the following equation
B = OcXks, (21)
where j3 is an estimation of true 3 (in practice one calcu-
lates 6y xws for all w € V\{j} and chooses any w as k and
[3 = By Xws If OyXws does not approximate to zero). This in
combination with Eq. (20) implies

a; = 5[92‘5], Vie V\(j) 22)

which indicates that an improved driving connection esti-
mation method has been suggested.
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2.3. Estimating node dynamics

We now show that the steady state response equation
set (6) can be extended to estimate node dynamics of bal-
anced® networks. It is easy to verify that

S5 ailny(xjs) - hilxio)]

i€V jeV,j#i
= Z Z aijhj(st) - Zhi(xis)( Z aij)
iV jeV, j#i ieV iEViizi
- Zhj(xjs)( Z aij)— Zhj(st)( Z a,—i)
jev ieVi#] jev iV
= Zhj(st)( Z aij — Z aji) =0, (23)
jev ieV,i#] ieV,i]

where the last step has used the property of balanced net-
works. This indicates that summing Eq. (6) over i yields

0 = Z[Gi(xis — Ris) — fi(Xis)]

iev
= D100 = %is) = fi(is) + fi(%is) = fil%is)]-
iev
It follows
D) = D00 = %is) = fi(is) + fi(%is)]
eV eV

When the Lipschitzian property of f; and 6; > L,; are used,

this implies
Z fi(Kis) ~ Z 6i(Xis — Kis)-

ieV iev

(24)

For any given i, we set Xy = 0 for k # i such that in the
summation in the left-hand side (LHS) of Eq. (24) there
remains only the item f;(X;s) and thus obtain

fi(Ris) = Gi(Xis — Kis) + Z O Xkss

keVk#i

(25)

where ﬁ is an estimation of f;. Using fitting methods, we
can thereby achieve fi to approximate f; with any precision
when Xjs is gradually changed with a small enough rate in
a desired range.

2.4. Estimating coupling functions
Equation (18) actually reads
aijhj(dj) = 6ixs, Vie V\{j}. (26)

If the node j is not isolated, then there exists k € V\{j} such
that ay; = 1. In this case, Eq. (26) indicates

Ri(6)) = kX, 27

IFor all i, DkeViki Aik = Dkevki aki- All symmetric networks are bal-
anced.
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Figure 1: True a; ¢ (+) and its estimations using true 8 (o) as
well as using B-estimator (A) before rounding for all i # 9.
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Figure 2: True f4(x) (—) for x € [-2, 2] and its approxima-
tion f4(x) (2) in discrete points.

where ﬁj is an estimation of h; (in practice one first cal-
culates 6y xys for all w € V\{j} and then chooses any w
as k and ﬁ,—(é,—) = OuXws If OyXys does not approximate to
zero). By using fitting methods, we can thereby approxi-
mate h; with any precision when §; is gradually changed
with a small enough rate in a desired range.

Remark: For sparsely connected networks, the condi-
tions (5) and (14) can easily be fulfilled because most el-
ements a;j are zero. This implies that the topology detec-
tion method works very well for regular networks, small
networks [6], local coupling networks and modular net-
works. Following similar steps as for the 1D case, one can
identify connection topology, individual node dynamics,
and coupling functions of dynamical networks with high-
dimensional elements.
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3. Examples

To illustrate our method, we consider a Cellular Neu-
ral Network (CNN) of 1D cells [7], where hj(xj)) = (1 -
e~21%) /(1 + e~21%) and

—V1iXi, for Xi < aij,
fi(x) := { viXi — 2viiaii, for a1i < Xi < @i,
—VoiXi — 2viiai + (Vi + vai)aoi,  for Xi > aui.

In the following, we assume that ni, a1, @i, v1i, voi and tjj
are uniformly distributed in [0.5, 2], [0.1,0.3], [0.7,0.9],
[0.2,0.4], [0.4,0.8], and [0, 1], respectively. We show the
typical results for small-world network model [6], which
is constructed by the following rules: (I) Start with a
m-nearest-neighbor coupled regular network and assume
1 < m << n; and (II) Add a new long-range edge into the
network with probability 0 < p << 1 between randomly
chosen pairs of nodes. We setn =50, m =4, and p = 0.1.

Setting X¢s chosen as in (16) with §; = 2, we can deter-
mine the driving connections of any node j from Eq. (20)
when g8 = h;(d;) is known, or from Eq. (22) when h;(¢;) is
unknown and B-estimator (21) is used. Figure 1 shows the
comparative results of the driving connections estimated
for node j = 9 as a representative node by using true g8 and
B-estimator, respectively. The true values for a; o(i # 9) are:
aig = Lwheni =5,7,8,10,11,27,32, and a;9 = O other-
wise. Then it is easy to see from Fig. 1 that both Eq. (20)
and Eq. (22) can identify correctly the driving connections
of node j = 9.

We can estimate any node dynamics f; from Eq. (25)
when ;s is gradually changed with a small enough step
rate in a desired range. As a typical result Fig. 2 shows the
node dynamics estimation for the node i = 4 when X;s starts
from -1 and increases with rate 0.1 per step. Similarly one
can achieve estimated node dynamics in any given range
[a, b] with high accuracy.

Finally we show the coupling function estimation using
Eg. (27) wherein 6; is gradually changed with a small
enough step rate in a desired range. As a representative
example Fig. 3 shows the coupling function estimation for
the node j = 3 when §; starts from -2 and increases with
rate 0.1 per step. One can similarly obtain estimated output
functions in any given range [a, b] with high accuracy.

4. Conclusions

We suggested a pinning control based method for iden-
tifying the architecture of dynamical networks with un-
known time-varying interaction delays. This architecture
identification method can be applied to: i) better under-
stand and predict the cooperative dynamic behavior and
emerging functions of dynamical networks; ii) detect net-
work “fault” caused by the network architecture; and iii)
perturb the connection topology, coupling functions, or
node dynamics for regulating the cooperative dynamic be-
havior and functions of networks as desired.
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Figure 3: True h3(x) (—) for x € [-2,2] and its approxi-
mation function hz(x) (2) in discrete points.
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