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Abstract– Distributed optimization dynamics of the 
mutually connected neural networks is applied to radio 
resource usage optimization in heterogeneous type 
cognitive radio networks. For performance evaluation, the 
proposed algorithm is implemented on an experimental 
heterogeneous wireless network system called Cognitive 
Wireless Cloud, which supports vertical handover between 
different radio access networks and various information 
exchange defined in IEEE1900.4. The proposed cognitive 
radio system optimizes objective function without any 
centralized computation. As the objective functions, two 
types of problems are introduced, load balancing and QoS 
satisfaction rate optimization, and the performance of the 
proposed method is compared with other distributed RAN 
selection algorithms on the real wireless system. Since the 
proposed algorithm based on the neural network dynamics 
directly optimizes the objective functions defined for radio 
resource usage optimization of the entire wireless network 
by distributed computation on each terminal, its 
performance becomes better than other algorithm which is 
based on the improvement of each terminal’s QoS. 
 
1. Introduction 

The cognitive radio technology is important research 
topic to optimize efficiency of radio resource usage, since 
the available radio resources for mobile wireless 
communications are limited but the demand for high-
speed wireless communications is increasing. As 
mentioned in Ref. [1], there are at least two types of 
cognitive radio systems, the Heterogeneous Type and the 
Spectrum Sharing Type Cognitive Radio Systems. The 
Heterogeneous Type Cognitive Radio System improve 
efficiency of the radio resource usage by utilizing any 
available radio access networks (RANs) provided by 
existing operators, such as the cellular phone systems, 
WiMAX, wireless LAN, and so on. The Spectrum Sharing 
Type Cognitive Radio Systems enable to utilize locally or 
temporally unused white space spectrum bands for the 
secondary cognitive systems. Recently, standardization of 
such cognitive radio systems is active [2]. This paper 
deals with the former cognitive radio system, the 
Heterogeneous Type Cognitive Radio Systems, which 
improves radio resource utilization of the entire wireless 
networks by selecting the best access point for each 
terminal and switching their connections dynamically by 
vertical handover technologies [3]-[5].  

 As one of the approaches to optimize radio resource 
usage distributively in heterogeneous wireless networks 
which includes several different types of RANs, the 
mutually connected neural networks [6] have been applied 
whose energy function autonomously minimizes by 
distributive updates of each neuron [7]-[10]. Refs. [9] and 
[10] showed that it is possible to optimize load balancing 
and QoS satisfaction rate by such optimization algorithms 
based on the neural network dynamics. Those algorithms 
were implemented on an experimental wireless network 
called Cognitive Wireless Cloud (CWC) [11], and their 
experiments showed that the algorithms based on the 
neural network can optimize the radio resource usage 
without any centralized computation [12].  

This paper evaluates the throughput performance of the 
RAN selection algorithm implemented on the real 
experimental wireless network system, and compare it 
with other distributed RAN selection algorithms. Those 
distributed algorithms are applied to two types of RAN 
selection problems, load balancing and QoS satisfaction 
rate optimization. For both problems, four kinds of 
distributed algorithms are introduced for comparisons and 
implemented on the experimental wireless network 
composed of two kinds wireless LANs. Real throughputs 
achieved by each algorithm are evaluated and compared 
on such an experimental system.  

 
2. Optimization of RAN Selection by Neural Network 
Dynamics 

There are various radio resource usage optimization 
problems in heterogeneous wireless networks. This paper 
introduces two problems, load balancing of the throughput 
and QoS satisfaction rate optimization. In order to 
optimize the objective functions of those problems, the 
mutually connected neural network is applied to the 
optimization problems. This algorithm does not require 
any centralized computation for optimizing objective 
functions, and is applicable to large-scale networks.  

To apply such minimization dynamics of the neural 
network to solution search in a combinatorial optimization 
problem, first we have to define the relation between the 
state of the solution and the firing pattern of the neural 
network. Since the problem is to find the appropriate 
wireless links which should be connected, in this paper, 
each firing of the neuron (i, j) (xij=1) is defined as the 
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establishment of the wireless link between the user 
terminal i  and the base station j, as shown in Fig. 1.  

 
Fig. 1 Relation between firings of the neurons and 

establishments of the wireless links. 
 
Based on this definition of the neurons, update equation 

of each neuron can be defined as follows,  

xij (t 1)
1 for    wijkl xkl (t)

l

NBS
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Nm

 ij

0 otherwise









,                            (1)
 

where xij(t) is the state of the (i, j) th neuron at time t, wijkl 
is the connection weight between the (i, j) th and (k, l) th 
neurons, ij  is the threshold of the (i, j) th neuron, Nm is 
the number of the user terminals, and NBS is the number of 
the access points in the network, respectively. By updating 
each neuron distributively, the following energy function 
decreases autonomously and converges to a minimum of 
this function, 
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when the following three conditions are satisfied, the 
neural network has symmetric connections, wijkl = wklij, 
zero self-feedback connection, wijij=0, and has to be 
updated asynchronously. This minimization dynamics of 
the distributed neural network has been applied to various 
combinatorial optimization problems. In this paper, it is 
applied to optimization problems in the RAN selection in 
the cognitive wireless cloud networks. 
 
2.1. Neural Network for Load Balancing Problem 

In the best-effort packet based wireless systems such as 
the wireless LAN, we can assume that the radio resource 
is almost equally shared among the mobile users. Based 
on such an assumption, available throughput Ti for the 
user i can be approximately defined as, Ti  cL (i) / NL(i )

BS
,  

where cj  is the total of the throughput which the base 
station j can provide, N j

BS
 is the number of terminals 

which is connecting to the base station j, and L(i) is the 
base station which the terminal i is connecting, 
respectively. This available throughput for the user 
depends on the number of the user terminals connecting to 
the same access point. Therefore, the optimization of the 
user throughput becomes a problem to find the optimal 
combinations of the wireless connections between the 
access point j and the user terminal i.  

In order to optimize the load balancing with keeping 
the higher throughput for each user, the following 
objective function is defined, 

E1
OBJ (t)  1

Ti (t)i1

Nm

 
NL(i)

BS

cL (i)i1

Nm

 .                                         (3) 

By minimizing this simple function, load balancing and 
the total of the throughput maximization can be optimized 
at the same time. Minimization of the reciprocal of the 
throughput Ti means maximization of the throughput. The 
value of E1

OBJ (t)  becomes smallest in the case that all Ti 
becomes equal, when the total available amount of radio 
resource is fixed. This access point selection problem to 
optimize load balancing can be formulated as a 
combinatorial optimization problem to minimize the value 
of E1

OBJ (t) by finding the best combination of the wireless 
connections between the access points and the user 
terminals. 

Based on the relation described in Fig. 1, Eq. (3) can be 
transformed to the following form, as a function of the 
state of neurons xij (t) [9], 
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where, ij  is the Kronecker delta. In this transformation, 
the objective function in Eq. (3) is transformed to the form 
of the neural network energy function in Eq. (2), with 
carefully satisfying the condition for autonomous 
minimization described above, to keep zero the weight of 
self-feedback connection. 

By comparing the coefficients of the neuron states, 
xij (t), in Eqs. (2) and (4), we can obtain the connection 

weights and the threshold to minimize Eq. (3) as 

Wijkl
A  2

1

cj

(1ik ) jl
 and ij

A  1

cj

, respectively.  

By autonomously updating each neuron by Eq. (1) with 
these obtained values of the connection weights and the 
thresholds, the state of the entire wireless network 
converges to an optimal state having fair radio resource 
sharing. In order to run this algorithm without centralized 
computation, we can distribute the computational load to 
the entities in the wireless networks, such as the RANs, 
the access points and the user terminals, and the neurons 
can be updated at those entities distributively. According 
to the state of those updated neurons, each terminal can 
select an access point to optimize radio resource usage, 
and hands over to the corresponding selected access point 
autonomously. This decentralized process optimizes the 
radio resource usage of the entire wireless network 
without any centralized computation. 

In this paper, it is assumed that each terminal can 
establish one wireless link with one access point at the 
same time. Therefore, the maximum firing neuron [13] is 
introduced to select exactly one access point for each user.  
 
2.2. Neural Network for Application to QoS 
Satisfaction Rate Optimization 

The goal of the optimization problem introduced in this 
subsection is to increase the number of user terminals 
whose QoS requirement is satisfied. Although there are 
various measures of the QoS, this paper focuses on the 
throughput. It is not difficult to extend the proposed 
algorithm to include other QoS metrics.  
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To satisfy the required throughput per user, easiest 
strategy is to maximize assigned throughput per terminal. 
However, the total amount of available radio resource is 
limited. To assign limited radio resources to each terminal 
efficiently, it is important to minimize differences between 
the available throughput and the required throughput for 
each terminal.  Therefore, its objective function is defined 
as the following equation,  
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,          (5)

 

where, Ri is the required throughput by the terminal i, and 
  is the parameter for weight on the maximization of the 
throughput, respectively. This equation becomes fourth 
order function of the neuron state, xij(t). However, the 
conventional Hopfield-Tank neural network [6] cannot be 
applied to this problem, because its energy function is 
second order function. To minimize the fourth order 
objective function in Eq. (5), this paper introduces the 
higher order neural networks [14]. The third order neural 
network, whose energy function is the fourth order energy 
function, is applied to the optimization problem. The 
update equation of the third order neural network can be 
defined as follows, 
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where, Uijklmnop
，Vijklmn

，Wijkl
  and ij

 are the third, the 
second and the first order connection weights and 
threshold, respectively. By updating each neuron by this 
equation, the following fourth order energy function can 
be autonomously minimized, 
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By transforming Eq. (5) to the form of Eq. (7) and 
comparing those coefficients, with satisfying the 
conditions for autonomous minimization, Uijklmnop

，Vijklmn
，

Wijkl
  and ij

to optimize the objective function )(OBJ
2 tE

 

can be obtained as follows,  
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By updating the neurons’ state using Eq. (6) with these 
obtained connection weights and thresholds in Eqs. (8)—
(11), the RAN selection problem to optimize the QoS 
satisfaction rate can be autonomously solved. Even when 
the neurons are updated distributively on the base stations 
or on the mobile terminals, the state of the network 
converges to the optimal state, without any centralized 
computation.  

 
3. Implementation and Experimental Environment 

The proposed scheme is implemented on the CWC 
system [1,11], which is a cognitive radio network 
supporting the protocols defined in IEEE 1900.4. The 
CWC enables seamless use of the best RANs for all of the 
mobile terminals, with vertical handover across different 
wireless networks and network/terminal reconfigurations. 
In the following experiments, the CWC with the wireless 
LANs is implemented in our laboratory for evaluating the 
proposed algorithm based on the neural network dynamics. 

The first experiment evaluates the performance of the 
RAN selection method to optimize load balancing 
proposed in Sec. II A. Its performance is compared with 
three other distributed RAN selection algorithms, (1) 
selection of the highest RSSI RAN (Highest RSSI), (2) 
selection of the RAN corresponding to the highest total 
throughput (Highest Total TH), and (3) selection of the 
RAN corresponding to the highest available throughput 
which can be shared to the terminal (Highest Shared TH). 
Average and variance of the throughputs per terminal are 
shown in Figs. 3 and 4. All of those algorithms, including 
the proposed neural network, are distributively run on the 
experimental network without any centralized 
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computation. In these algorithms, each terminal updates 
their selections of the base stations in randomly selected 
intervals between 10 to 20 seconds. To avoid too many 
unnecessary handovers, the terminals really perform a 
handover only at the case that the same RAN selection is 
repeated three times. 

 
Fig. 3  Average throughputs per terminal of four 

distributed RAN selection algorithms. 
 

 
Fig. 4  Variance of the throughputs of four distributed 

RAN selection algorithms. 
 
From Fig. 3, we can see that the RAN selection 

algorithms, selection of highest shared throughput 
(Highest Shared TH) and the proposed neural network 
based algorithms have the best throughputs. It is because 
these two algorithms increase available radio resources 
shared to each terminal. On the other hand, from Fig. 4, 
variance of the Highest Shared TH algorithm becomes 
much larger than the neural network, and fairness of the 
throughput becomes much worse. The proposed algorithm, 
whose objective function is Eq. (4), optimizes the fairness 
and throughput maximization at the same time only by 
very simple computation that is neuron update by Eq. (1). 
Therefore, the variance of the throughput can be also kept 
smaller.  

The second experiment evaluates the performance of 
the RAN selection method to optimize the QoS 
satisfaction rate proposed in Sec. II B. Its performance is 
compared with three different distributed RAN selection 
algorithms, (1) selection of the RAN whose total 
throughput is larger than the required throughput (Total 
TH larger than required), (2) selection of the RAN which 
is able to share the throughput larger than the required 
throughput (Shared TH larger than required), and (3) 
selection of the RAN which satisfies the following both 
conditions, available throughput is larger than the required 
throughput and the differences between the available and 
the requested throughputs is the smallest (Min gap Shared 
and Required).  

The QoS satisfaction rates obtained by such four types 
of distributed RAN selection algorithms, including the 
proposed neural network based distributed algorithm to 
optimize Eq.(10), are shown in Fig. 5. Fig. 5 shows that 
the proposed neural network has the best performance. It 
is because that only the proposed algorithm deals with the 
optimization problem of the entire network. On the other 
hand, other four algorithms make satisfaction of the 
required QoS only for each terminal separately. The 
proposed algorithm can optimize various kinds of 
complicated objective functions without any centralized 
computation. 

 
Fig. 5  QoS satisfaction rates of four distributed RAN 

selection algorithms.  
 

4. Conclusion 
In this paper, a distributed optimization dynamics of the 

mutually connected neural network is applied to optimal 
RAN selection in heterogeneous type cognitive radio 
networks, and its performance is evaluated. The results 
show that the proposed algorithm exhibits the best 
performance in such real experimental system. The 
proposed algorithm using mutually connected neural 
network directly optimizes an objective functions defined 
for the entire networks by distributed computation on each 
terminal. Therefore, its performance becomes better than 
other algorithm, which is based on the improvement of 
each terminal’s QoS. 
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