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Abstract— Real systems often show complex behavior due to
interaction among many elements and compose networks. To
model and predict these systems, we estimate network structures
by using only time-series data as behavior of systems. Because
elements interacting each other show similar behavior, it is useful
to apply the correlation coefficient, the partial correlation coeffi-
cient, the mutual information, and the transfer entropy. However,
according to network topology and strength of interaction among
nodes, the efficiency of these statistical measures and the optimum
measure must be different. In this study, we constitute chaos
coupled systems and examine the efficiency of these measures,
changing model parameters. Moreover, we discuss given results
on the basis of the degree of synchronization among elements
and the Lyapunov exponents of system.

I. INTRODUCTION

There are many nonlinear dynamical systems in the real
world. These systems often constitute networks, for example,
neural networks, stock markets, chain of earthquake, etc.,
whose elements interact each other and show complex be-
havior. To analyze such complex systems, it is important to
estimate network structures only by observed behavior from
networks. If we know network structures, we can model sys-
tems more accurately and can use the model to predict future
behavior. As behavior of a network, we obtain time-series
data observed in each node. Because connected nodes interact
each other, each behavior might be similar. We consider that
it is possible to estimate network structure by estimating
the similarity by statistical measures, such as the correlation
coefficient, the partial correlation coefficient, the mutual infor-
mation, and the transfer entropy[1]. The correlation coefficient
is suitable to estimate linear relationship. However, there is the
problem of false correlation in clustered network. The partial
correlation is useful for reducing false correlation. On the
other hand, the mutual information and the transfer entropy
are suitable to estimate nonlinear relationship. However, the
mutual information has the similar problem to the correlation
coefficient. In our study, to examine each optimum measure
according to network structures, we perform some simulations
by using the Watts and Strogatz (WS) model[2]. The WS
model can make various network structures from the regular
network to the small-world network and the random network.

Moreover, we compose chaos coupled systems[3] having var-
ious network topology made by the WS model, and drive
temporal behavior of the systems as time-series data observed
in each node. Then, we estimate network structures by using
above statistical measures.

II. CHAOS COUPLED SYSTEMS

Using the WS model proposed by D. Watts ans S.
Strogatz[2], we can compose a network whose topology can
be simply changed with a parameter. First, we prepare the
regular network where all nodes are connected only locally.
Although the network has many clustered nodes, the distance
between nodes is very large. If we randomly rewire all edges of
the network, the network becomes the random network where
local clusters are destroyed and the distance between nodes
becomes short. Then, according to the rewiring probability p,
we can realize the small-world network, which is an inter-
mediate graph between the regular network and the random
network, and realize large cluster and small distance between
nodes, simultaneously. If we set p = 0, the topology of the WS
model is the regular network. If we set p = 1, the topology
of the WS model becomes the random network. By setting
0 < p < 1, we can realize the small-world network.

As a numerical model of complex systems, the coupled map
lattice was proposed by K. Kaneko[3]. However, each element
of the model interacts only locally like the regular network. In
this study, to change the topology of interaction, we modify
the coupled map lattice by using the WS model. Namely, in
the modified coupled map lattice, each element interacts in
the regular network, the random network or the small-world
network.

This model is defined by

xi
t+1 = f

(1 − ϵ)xi
t +

ϵ

Ni

Ni∑
j∈Gi(p)

xj
t

 (1)

where xi
t is a time-series value of the i-th node, and Ni is the

number of nodes connected with the i-th node. These nodes
are represented by j. The Gi(p) is a set of node j connected
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with the i-th node and depends on network structure decided
by the rewiring probability p. The strength of interaction in
Gi(p) is denoted by ϵ. Then, as a dynamics in the coupled
map lattice, we use the logistic map:

f(xt) = 1 − ax2
t , (2)

which is widely analyzed as a sort of chaotic maps.

III. ANALYSES OF NETWORK BEHAVIOR

In this section, we examine behavior of the chaos coupled
system introduced in Sec.2. We set the number of nodes n

to 100, and set the length of each node’s time-series data to
2, 000 after transient states of 3, 000 times.

We calculate the degree of synchronization in the chaos
coupled system by

S =
1

nP2

∑
i̸=j

|Ci,j | (3)

where Ci,j is the correlation coefficient between two time
series xi and xj .

Figure 1 shows the results of S. If p is small, that is, the
topology of network becomes the regular graph, the degree of
synchronization is small. However, if p becomes larger, that
is, the topology of network becomes the random graph, the
degree of synchronization becomes larger. In addition, when
ϵ = 0.2, most of nodes are synchronized regardless of p.

Next, we calculate the Lyapunov exponents of the chaos
coupled system. The Lyapunov exponents quantify the depen-
dence on a initial condition and the nonlinearity of systems.
To calculate the Lyapunov exponents, we construct a attractor
Zt in n-dimensional state space:

Zt = {x1
t , x

2
t , · · · , xn

t }. (4)

By calculating the difference δDt enhanced from the initial
difference δD0 between the attractor Zt and its nearest attrac-
tor, we estimate the Lyapunov exponents λd, d = 1, · · · , n, as
follows:

λd = lim
t→∞

1
t

log
|δDt|
|δD0|

. (5)

Then, max{λd} is estimated as the maximum Lyapunov
exponent λM .

Figure 2 shows the results of λM . When ϵ = 0.1, λM is very
large. Then, as p is smaller, that is, the topology of network
becomes the regular graph, λM becomes larger.

IV. ESTIMATION OF NETWORK STRUCTURE

To understand a complex system in detail, it is important
to examine its network structure. This information helps us
to image what happens on networks. In this study, we try to
detect network structure only from time-series data derived by
chaos coupled systems. To examine whether two nodes interact
each other or not, that is, whether two nodes are connected
or not, we used the following statistical measures. If these

p

ε S

Fig. 1. The degree of synchronization S in the chaos coupled system defined
by Eq.(1).

ε

p

λM

Fig. 2. The maximum Lyapunov exponent λM of the chaos coupled system
defined by Eq.(1).

measures between two nodes are very large, we considered
that these nodes are connected. Then, we equalized the number
of estimated connections with the number of connections of
the original network. To calculate the accuracy of estimated
connections, we use the index:

E =
|P ∩ N |
|N |

(6)

where P means the set of estimated connections, and N means
the set of the original connections. That is, E = 1 means
perfectly estimated the original connections.

A. The Correlation Coefficient

The correlation coefficient estimates linear correlation be-
tween two time series xi and xj .

Ci,j =

〈
(xi

t − 〈xi〉)(xj
t − 〈xj〉)

〉
σxiσxj

(7)

However, this measure cannot estimate nonlinear relation, and
includes indirect correlation due to the common input into both
node i and j.

The accuracy E by the correlation coefficient is shown
in Fig.3. If p is larger, the accuracy E by the correlation

- 2 -



p

ε
E

Fig. 3. The accuracy E of network structures estimated by the correlation
coefficient.
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Fig. 4. The same as Fig.4, but the partial correlation coefficient.

coefficient is worse. The reason is that synchronization among
nodes is strong as shown in Fig.1, and it is difficult to remove
indirect correlations. If p is small, that is, the network structure
becomes the regular graph, the accuracy E becomes better
because the synchronization is weak. Then, as ϵ is larger, the
interaction among nodes becomes stronger and the behavior
of systems is more affected by network topology; hence the
accuracy E is greatly affected by p. However, when ϵ is small,
because the synchronization is very strong in ϵ = 0.2 and the
maximum Lyapunov exponent is very large in ϵ = 0.1, it is
difficult to estimate such a network structure by the coefficient
coefficient.

B. The Partial Correlation Coefficient

To remove indirect correlations, it is efficient to use the
partial correlation coefficient:

Pi,j =
−C ′

i,j√
C ′

i,iC
′
j,j

(8)

where C ′
i,i is the inverse matrix of Ci,i.

The accuracy E by the partial correlation coefficient is
shown in Fig.4. Even if the network structure is random

p

ε
E

Fig. 5. The accuracy E of network structures estimated by the mutual
information.
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Fig. 6. The same as Fig.5, but the transfer entropy.

and the synchronization is strong, we can estimate network
structures more accurately by removing false correlations.

C. The Mutual Information

The mutual information can measure nonlinear relations.
However, the mutual information has a similar problem to the
correlation coefficient, that is, indirect relations are included.
The mutual information is denoted as follows:

Mi,j =
∑

t

p(xi
t, x

j
t ) log

p(xi
t, x

j
t )

p(xi
t)p(xj

t )
, (9)

where xi
t is a time series of the i-th node, p(xi

t, x
j
t ) is a joint

probability. We use the following equation to calculate joint
probability:

p(xi
t, x

j
t ) =

1
L

∑
t′

θ

(
Fsγ −

∣∣∣∣(xi
t

xj
t

)
−

(
xi

t′

xj
t′

)∣∣∣∣) (10)

where θ is a step function, L is the length of time series data,
Fs is a full scale range of the time series, and γ is a resolution
rate. In this study, we set γ = 0.2.

Figure 5 shows the accuracy E by the mutual information.
These results are similar to the case of the correlation coeffi-
cient.
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D. The Transfer Entropy

The transfer entropy[1] can measure nonlinear relations
between two nodes without indirect relations. The transfer
entropy is denoted as follows:

Ti→j =
∑

t

p(xj
t+1, x

j
t , x

i
t) log

p(xj
t+1|x

j
t , x

i
t)

p(xj
t+1|x

j
t )

(11)

where p(xi
t+1|xi

t, x
j
t ) is a conditional probability. To simplify

directional interactions between two nodes, we use the mean
value of Ti→j and Tj→i for estimations:

Ti,j =
1
2
(Ti→j + Tj→i) (12)

as a statistical measure.
Figure 6 shows the accuracy E of network structure esti-

mated by the measure Ti,j . In the regions where Lyapunov
exponents are very large and nonlinearity is extremely strong,
especially ϵ = 0.1, the measure works better.

E. The Optimum Measure for Estimating Each Network Struc-
ture

To summarize the results shown in Figs.3–6, although the
difference among these results are not very clear, we show the
maximum accuracy E of network structure estimated by each
statistical measure in Fig.7, and show the optimum measures to
maximize the accuracy E according to modeling parameters
p and ϵ in Fig.8. In Fig.7, the estimated accuracy is worse
in ϵ = 0.2 because the synchronization among nodes is very
strong and time-series data of each node are almost the same.

As shown in Fig.8, the correlation coefficient is most
efficient measure if synchronization of system is weak. As
p becomes larger, the partial correlation coefficient works
better. This measure can remove the false correlations made
by strong synchronization among nodes. Moreover, if systems
have the large Lyapunov exponents, the mutual information
and the transfer entropy are efficient for estimating nonlinear
interactions. In particular, the mutual information is more
efficient when ϵ is larger, and the transfer entropy is more
efficient when ϵ is smaller.

V. CONCLUSION

In this study, we estimated network structures by four statis-
tical measures only from time series observed in chaos coupled
map. Then, it was shown that the optimum measure which
estimates network structure most accurately changes according
to network parameters: the strength of interaction between
connected nodes and network topologies. Moreover, to discuss
the reason, we also estimated the degree of synchronization
and the Lyapunov exponents of each system.

As results, in the regular network, the correlation coefficient
is more suitable because each node is not almost synchronized
and the false correlation dose not appear. However, because,
in the random network, each node is synchronized strongly

p

ε E

Fig. 7. The maximum accuracy E of network structure estimated by each
statistical measure.
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Fig. 8. The optimum measures to maximize the accuracy E of estimated
network structure.

and the false correlation appears, the partial correlation coeffi-
cient becomes more suitable. Furthermore, as the Lyapunov
exponents become larger, nonlinear measures – the mutual
information and the transfer entropy become more suitable.
In particular, if connected nodes interact weakly, the transfer
entropy works well.
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