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Abstract—In this paper, we analyze an impact model
with three masses numerically and experimentally. It repli-
cates the dynamics of the gear system. First, we explain
the model and its dynamics and then introduce the experi-
mental setup. Finally, we show some numerical and exper-
imental results. In particular, we find the appearance of the
grazing bifurcation in this model.

1. Introduction

Dynamical system with interrupted characteristics has
been analyzed since decades [1]. It is well known that this
class of the systems exhibit various kinds of the bifurca-
tion phenomena, e.g., period doubling bifurcation [2, 3],
border-collision bifurcation [4, 5], and so on. In particular,
it is considered that the bifurcation analysis is a effective
way to clarify the system’s qualitative property and many
researchers have analyzed it in detail.

Impact oscillators are often observed in the engineering
field. The impact damper or over head wire-pantograph
system in the mechanical field [6, 7], spiking neuron model
in the biological field [8] and forest fire model in the eco-
logical field [9] are the typical examples of the practical
impact oscillators. On the other hand, it is also known
that most of the mechanical systems have some gap be-
tween each apparatus in order to smoothly put themselves
into action; the gear system is the typical example of it.
In general, this class of the mechanical systems have the
unavoidable problem, i.e., impact oscillation occurs when
each apparatus run with the compelling force. Moreover,
above problem affect us seriously in our daily lives, such
as the noise, attrition, and so on. Thus, to examine the fun-
damental mechanism of the impact oscillation in the gear
system is one of the important topic from the practical point
of view [10, 11]. But, the detailed analysis of the practical
gear system is very difficult because of its complex behav-
ior. Therefore, Ref. [12] proposed the simplest class of the
impact model which simulates the dynamics of the practi-
cal gear systems by using three mass points, springs and
dampers. The basic oscillation has been discussed in Ref.
[12]; however, detailed analysis and its experimental veri-
fication is insufficient.

This paper addresses the first step to examine the bifurca-
tion phenomena in an impact model with three mass points,
both numerically and experimentally. First, we explain the
model and its dynamics and then introduce the experimen-
tal setup. Finally, we show some numerical and experimen-
tal results. In particular, we find the grazing bifurcation in
this model.

2. Impact models with three mass points

2.1. A physics model

Figure 1 shows a physical model of the gear system
[10, 11]. The model has three mass points, springs and
dampers;m1, m2 and m3 denote the mass,k1, k2 and k3

denote the spring constant,c1, c2 andc3 denote the damp-
ing coefficient, respectively.e1 ande2 are the gap between
the mass points. The compelling forceF = acosωt is im-
pressed on the mass pointm2, and impact oscillation occurs
betweenm2 andm1 or m2 andm3.

The motion equations are defined as follows:



















m1ẍ1 + c1ẋ1 + k1x1 = 0
m2ẍ2 + c2ẋ2 + k2x2 = acos(ωt)
m3ẍ3 + c3ẋ3 + k3x3 = 0

, (1)

wherex1, x2 and x3 is the displacement from the equilib-
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Figure 1: A gear system.
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rium position. Now, we define the following equation in
order to unify the displacement coordinate withm2.

X1 = x1 + e1, X2 = x2, X3 = x3 − e2 (2)

The dimensionless values are set as follows:

C1 =
c1

m1
, C2 =

c2

m2
, C3 =

x3

m3
,

K1 =
k1

m1
, K2 =

k2

m2
, K3 =

k3

m3
, A =

a
m2
.

(3)

Thus, Eq. (1) is rewritten as follows:


























Ẍ1 +C1Ẋ1 − K1X1 − K1e1 = 0

Ẍ2 +C2Ẋ2 + K2X2 = Acos(ωt)

Ẍ3 +C3Ẋ3 + K3X3 + K3e2 = 0

. (4)

In general, the impact phenomenon is classified into two
types in the model; the first one is the elastic collision, and
the other is the inelastic collision. Note that the model
which is analyzed in this paper exhibits inelastic collision.
Thus, the impact phenomenon is calculated by the relation-
ship between the law of conservation of momentum and
the reflection coefficient, i.e., the following equations are
defined.















m1Ẋ1+ +m2Ẋ2+ = m1Ẋ1− +m2Ẋ2−

Ẋ1+ − Ẋ2+ = −E(Ẋ1− − Ẋ2−)
, (5)















m3Ẋ3+ +m2Ẋ2+ = m3Ẋ3− +m2Ẋ2−

Ẋ3+ − Ẋ2+ = −E(Ẋ3− − Ẋ2−)
(6)

Ẋ1−, Ẋ2− andẊ3− are the velocities ofm1, m2 andm3 before
the impact.Ẋ1+, Ẋ2+ andẊ3+ are the velocities ofm1, m2 m3

after the impact.E in Eqs. (5) and (6) denote the reflection
coefficient between the each mass points. Consequently,
Eqs. (5) and (6) can be written as follows.































Ẋ1+ =
m1 − Em2

m1 +m2
Ẋ1− +

(1+ E)m2

m1 +m2
Ẋ2−

Ẋ2+ =
(1+ E)m1

m1 +m2
Ẋ1− +

m2 − Em1

m1 +m2
Ẋ2−

(7)































Ẋ3+ =
m3 − Em2

m3 +m2
Ẋ3− +

(1+ E)m2

m3 +m2
Ẋ2−

Ẋ2+ =
(1+ E)m3

m3 +m2
Ẋ3− +

m2 − Em3

m3 +m2
Ẋ2−

(8)

Eqs. (7) and (8) denote the velocity of the mass pointsm1,
m2 andm3 after the impact.

Figure 2 shows an example of the orbit. In the figure,
xm1, xm2 andxm3 denote the displacement,vm1, vm2 andvm3

denote the velocity of the mass pointsm1, m2 andm3, re-
spectively. The dynamics of the orbits is given by Eq. (4).
When the orbitxm2 hits xm1’s orbit, the velocity of the mass
pointv switches fromv− to v+. After that,xm2 exhibits free
oscillation, xm1 behaves with the compelling force. Note
that the relationship betweenxm2 andxm1 is same.

2.2. Experimental setup

To examine the dynamics of the gear system experimen-
tally, we propose an experimental apparatus which simu-
lates the dynamics of the gear system. Figure 3 shows
the conceptual diagram of the model. Mass1, Mass2 and
Mass3 denote the mass pointsm1, m2 andm3 in Fig. 1,
respectively. The spring constants are set ask1, k2 andk3.
The gaps between Mass1 and Mass2,e1, and Mass2 and
Mass3,e2, are set ase1 = 2[mm] ande2 = 1[mm]. The
motor (TAMIYA 6-Speed Gearbox H. E.), which is fixed
on Mass2, gives the compelling force to Mass2; the com-
pelling force is described asF = acosωt. Note that each
mass oscillate with single degree of freedom on the rail.
In addition, Mass1, Mass2 and Mass3 are made of differ-
ent material in each impact plane; Mass1 and Mass3 are
made of aluminum block (MISUMI A5052P) and Mass2 is
made of the steel (MISUMI SS400). The displacement of
each mass is determined by the laser displacement sensor
(KEYENCE LK-G155 LK-G405).
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Figure 2: An example of the orbit.
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Figure 3: An impact model with three mass points.
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(a) Periodic waveform (f = 4.4 [Hz]) (b) Non-periodic waveform (f = 4.6 [Hz])

Figure 4: An example of the orbit in the numerical result.
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Figure 5: An example of the orbit in the experimental result.

3. Analytical results

3.1. Dynamical behavior of the experimental appara-
tus

Figures 4 and 5 show an example of the orbit; Fig. 4 is
the numerical result, Fig. 5 is the experimental result. In
these figures, the green, red and blue-colored orbits denote
the time series displacement of Mass1, Mass2 and Mass3.
Note that we assume the upwards displacement as the pos-
itive direction. It is clear that the numerical results are ver-
ified by the experimental result; because the experimental
result duplicates the system dynamics as the numerical re-
sult at the same parameter value. Figure 6 shows an exam-
ple of the one parameter bifurcation diagram with changing
the frequency of the compelling forcef . Note that the or-
bit is mapped by every period ofT which is the cycle of
the compelling force. It should be also mentioned that (a)
and (b) in Figs. 4 and 5 correspond to the parameters (a)
and (b) in Fig. 6. It can be understood that the model has
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Figure 6: 1-dimensional bifurcation diagram

various kinds of periodic orbit and non-periodic orbit. For
example, the periodic orbit is observed aroundf = 4.5[Hz]
(see Figs. 4, 5 and 6 (a)). After that the periodic orbit
bifurcates to the non-periodic orbit as the parameterf is
increased (see Figs. 4, 5 and 6 (b)). The same system be-
havior appears at the other parameter value off as shown
in Fig. 6. Thus, it is said that the bifurcation has occurred
and the system dynamics has changed with change in the
compelling forcef . In the following analysis, we focus
on the bifurcation phenomena and its effect on the system
behavior.

3.2. Appearance of the grazing bifurcation

We focus on Figs. 4 and 5 (a). It is clear that Mass2
exhibits periodic behavior in free oscillation with alternate
impact phenomenon between Mass1 and Mass2 in both of
the numerical and experimental results. On the other hand,
the non-periodic orbit is observed atf = 4.6[Hz] (see Figs.
4 and 5 (b)). There are two types of the different behav-
ior after the first impact phenomenon between Mass2 and
Mass3 atf = 4.6[Hz]; Mass2 hits Mass1 again in the first
case, Mass2 hits Mass3 in the other case. Thus, Figs. 4
and 5 (b) seems to be the periodic orbit; however, it is clas-
sified into the non-periodic orbit because the impact be-
tween Mass2 and Mass3 has no regularity. This kind of
system behavior is seen in the other parameter value off
(see Fig. 6). We find that the grazing bifurcation affects the
system dynamics very much. To examine the mechanism
of the grazing bifurcation in detail, we show a conceptual
diagram of the route to the grazing bifurcation in Fig. 7.
The upper side of the orbit denote Figs. 4 and 5 (a) and
the lower side of the orbit denote Figs. 4 and 5 (b), respec-
tively. It is clear that the impact oscillation has occurred
and the system dynamics has changed. In other words, it
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Figure 7: Appearance of the grazing bifurcation.

is understood that the grazing bifurcation is occurred be-
tween the parameter value of (a) and (b) in Figs. 4, 5 and 6.
We predict that all of the bifurcation phenomena which can
be observed in the system is the grazing bifurcation. Con-
sequently, we conclude that the appearance of the grazing
bifurcation greatly affect in the system dynamics.

4. Conclusion

In this paper, we have analyzed an impact model with
three masses, which simulates the dynamics of the gear
system both from the numerical and experimental points
of view. First, we explained the basic model of the gear
system and its dynamics and then introduced the experi-
mental setup. Finally, some numerical and experimental
results were shown. We found that the system has various
kinds of the periodic orbit and non-periodic orbit. In par-
ticular, it was clarified that the appearance of the grazing
bifurcation greatly affected in the system dynamics. The
analytical results will contribute to the practical gear sys-
tem; because the model simulated the basic dynamics of
the practical gear systems.

Further, we plan to examine the system’s qualitative
property in a wide parameter space via the bifurcation anal-
ysis.
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