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Abstract—Energy localized vibration in nonlinear lat-
tices is known as intrinsic localized mode. The intrinsic
localized mode can move without decaying its energy con-
centration. In this paper, behaviors of the moving intrinsic
localized mode in a nonlinear lattice having two different
regions are investigated. In particular, the transmission and
the reflection at the junction of these two regions are fo-
cused on and discussed in detail.

1. Introduction
Intrinsic localized mode (ILM), which is a spatially lo-

calized and temporary periodic solution of nonlinear cou-
pled oscillators, has been identified in various experimental
systems [1]. Originally, the ILM is identified as a station-
ary oscillation of the nonlinear lattice [3, 2]. That is, the
locus of ILM does not move. However, it is well known
that ILM can move without decaying when an unstable
ILM is perturbed to appropriate direction [4]. Such moving
ILM is also observed experimentally in micro-cantilever
arrays [5]. It implies that the moving ILM can be uti-
lized as a carrier to transport kinetic energy in micro-/nano-
engineering. So far, the interactions between the moving
ILM and impurities are studied [6]. The transmission, re-
flection, and trapping phenomena are observed. This pa-
per investigates the behavior of moving ILM at a junction
of two different lattices. In particular, the velocity change
after the moving ILM reach the junction is focused on.
In Sec.2, the model equation and a static ILM are intro-
duced. In Sec.3, the basic property of moving ILM is men-
tioned. The velocity changes are investigated and discussed
in Sec.4. Finally, a brief summary of the result is shown in
Sec.5.

2. Nonlinear lattice consisting of two regions
A nonlinear lattice, which is a mixed-model of the well-

known Fermi-Pasta-Ulam (FPU) lattice and the nonlinear
Klein-Gordon (NKG) lattice, is focused on in this paper.
It is known that this type of the nonlinear lattice describes
vibrations of coupled cantilever arrays [7, 5]. Motion of the
tip of the nth cantilever un obeys the following equation:

ün = − α1,nun − α2,n(2un − un+1 − un−1)

− β1,nu3
n − β2,n(un − un+1)3 − β2,n(un − un−1)3,

(1)

where the linear on-site and coupling coefficients for the
nth site are denoted by α1,n and α2,n, respectively. The mag-
nitude of cubic nonlinearity is represented by β1,n and β2,n
for the on-site and the couping term, respectively. The total
energy of the system is
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1
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N∑
n=1

(1
2
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1
4
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+
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2
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4
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)
, (2)

where N is the total number of oscillators and is set at N =
32. In this paper, the periodic boundary conditions un+1 =

u1 and u0 = un are assumed.
In Eq.(1), two types of ILM coexist. One has an ampli-

tude distribution centered on a site. This site-center mode is
called Sievers-Takeno mode (ST mode). The other is bond-
center mode. Two neighboring oscillators have large am-
plitude and they oscillate anti-phase, which is called Page
mode (P mode). Figure1(a) shows the amplitude distribu-
tion of an ST mode which is centered at n = 6. The param-
eters are set at α1,n = 1, α2,n = 0.1, β1,n = 1, β2,n = 0.6 for
all n, and H = 2.5. As shown in the figure, the energy is
only distributed in a few sites.

The stability of ILMs depends on their spatial symmetry
and the parameter ratio in the nonlinear coefficients rβ =
β2,n/β1,n [8]. If the ratio rβ is small, ST modes are stable
whereas P modes are unstable. However, these stabilities
are flipped when rβ becomes large. The threshold is around
rβ = 0.54 for the case that α1,n = 1, α2,n = 0.1, β1,n = 1
for all n, and H = 2.5 [8]. As shown in Fig.1(b), one
characteristic multiplier is located outside the unit circle.
Thus, the ST mode is unstable.

3. Moving ILM
The position of the center of ILM does not change in

time. However, it is known that unstable ILM begins to
move with keeping its energy concentration if it is per-
turbed to appropriate direction [6]. The ILM traveling with
almost constant velocity is called moving ILM. In this pa-
per, to create moving ILMs, the eigenvectors ps, pu corre-
sponding to λs < 1, λu > 1, respectively, are used. The
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Figure 1: ST mode standing at n = 6. The total energy is H = 2.5. (a): Distribution of displacements when all the
velocities are u̇n = 0. (b): Characteristic multiplies.
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Figure 2: Energy distribution of the moving ILM. The per-
turbation parameter is set at ϵ = 2. The velocity is about
0.14 sites per unit time.

initial condition of a moving ILM um is obtained as

um = uST + ϵ(pu + ps)/2, (3)

where uST represents the static ILM and ϵ > 0 is the per-
turbation parameter. Figure2 shows the time course of the
energy distribution of a moving ILM which is created with
ϵ = 2. The moving ILM has almost constant velocity and
keeps its energy concentration during the simulation.

In order to extract the center of ILM, the following pro-
jection G : R2N → C is useful [9]:

h = G(u, u̇) =
N∑

n=1

{(
1
2

u̇2
n + UOn(un)

)
ei 2π

N n

+UIn(un − un−1)ei 2π
N (n+ 1

2 )
}
,

(4)

where

UOn(un) =
1
2
α1,nu2

n +
1
4
β1,nu4

n, (5)

UIn(un − un−1) =
1
2
α2,n(un − un−1)2 +

1
4
β2,n(un − un−1)4.

(6)

The trajectories of the center of moving ILMs are shown
in Fig.3. The slope becomes steep as the perturbation in-
creases. The small fluctuation observed when the pertur-
bation is small is due to the phase structure around static
ILMs. A moving ILM started near an unstable ILM transits
close to other unstable ILMs. The velocity is reduced when
the moving ILM is close to the static unstable ILM [11].
To eliminate the effect of the small fluctuation of the ve-
locity, the least square method is applied to estimate the
slope of the trajectories. The resultant figure is shown in
Fig.4. The velocity is almost proportional to the perturba-
tion. The relationship between the velocity and the pertur-
bation somewhat depends on the total energy. Static ILMs
having higher energy become faster moving ILMs for the
same perturbation. The plateaus appeared between ϵ = 1.5
and 3 mean there is a parameter region where the moving
ILM does not accelerated. It may be due to the phase struc-
ture, but it has not been clarified yet.

4. Transmission and reflection at the junction
In this section, the effect of parameter gap is investi-

gated. One of parameters in Eq.(1) is changed for from
the 17th to the 32nd site. The magnitude of the parame-
ter gap is denoted by δ•, where • takes α1, α2, β1, and β2.
Consider the nonlinear lattice having two different regions:

α1,n = 1, α2,n = 0.1, β1,n = 1, β2,n = 0.6, 1 ≤ n ≤ 16,
α1,n = 1, α2,n = 0.1, β1,n = 1.02, β2,n = 0.6, 17 ≤ n ≤ 32.

In this case, the parameter gap is represented as δβ1 = 0.02.
The trajectories when the case of δβ1 = 0.02 and −0.02 are
shown in Figs.5(a) and 5(b). When the parameter gap is
positive, all the moving ILMs are accelerated at the junc-
tion. On the other hand, the moving ILM is reflected at
the junction when the parameter gap is negative and the ve-
locity is small. In addition, the transmitting ILMs which
originally have large velocities lose their velocity. The
switch from the reflection to the transmission depends on
the parameter gap. Figures.6(a)–6(d) shows the change
of velocity ratio rv in before and after the moving ILM
reaches the junction. The case that rv is unity means that
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Figure 3: Trajectories of moving ILMs extracted by Eq.(4).
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Figure 4: Relationship between the mean velocity and the
perturbation. The mean velocity is obtained by using the
least-square method which is applied to the trajectory data.

the moving ILM transmits the junction without gaining
or losing the velocity. When the moving ILM is acceler-
ated/deaccelerated, the ratio becomes rv > 1 or 1 > rv > 0,
respectively. For the perfect reflection, the ratio rv takes
−1.

As shown in the figures, the moving ILMs gain the ve-
locity when the parameter gaps are positive. For the trans-
mission, the ratio rv converges to unity as the perturbation
increases. It implies that the acceleration effect becomes
relatively weak when the velocity of the moving ILM is
large. The reflections appear only for the negative param-
eter gaps and the small perturbations. Since the velocity
of the moving ILM is almost proportional to the perturba-
tion, there exist a threshold velocity for each case to switch
from the reflection to the transmission. The threshold ve-
locity clearly increases with respect to the parameter gap.
In addition, it depends on what parameter is changed. The
threshold velocities for the case of Fig.6(a) and 6(d) are
larger about twice as much as those of Fig.6(b) and 6(c)
when the parameter is decreased about 10 % from the orig-
inal value.

5. Conclusion

In this paper, the velocity change of moving ILMs at
the junction of two different nonlinear lattices is discussed.

As as result, the transmissions and the reflections are ob-
served. For the cases that the parameter gaps are positive,
the transmissions with acceleration are only observed. On
the other hand, the transmissions with deacceleration and
the reflection are observed for the negative parameter gaps.
The moving ILM needs a threshold velocity to transmit the
junction. The mechanism of appearing the threshold ve-
locity is still unclear. We will investigate the mechanism
in term of the change of phase structure with the linear or
nonlinear coefficients. If the threshold velocity is able to
be quite large, a transmission barrier against moving ILMs
will be realized, i.e. rectifier of ILM. The rectifier of ILM
would be applied to the thermal rectifiers, in which nonlin-
earity plays crucial role [10]. The authors hope to realize a
thermal device using ILM in the future.
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Figure 5: Trajectories of moving ILMs. The coefficient of cubic nonlinearity β1,n changed for from the 17th to the 32nd
oscillators. Dark regions indicate where the parameter is changed. (a) δβ1 = 0.02. (b) δβ1 = −0.02.
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Figure 6: Velocity ratios for changing (a) linear on-site, (b) linear coupling, (c) nonlinear on-site, and (d) nonlinear
coupling. The dashed lines are guide for eye.
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