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Abstract—Being inspired by the chaotic water-
wheel whose rotational motion is governed by the
Lorenz equations, invented by Malkus and Howard
in 1970s, we have developed a chaotic gas turbine
that simulates the dynamical behavior of the Rayleigh-
Bénard convection heated from below. We show the
equations of motion of our gas turbine and compare
numerical solutions with experimental observations for
the angular velocity of the rotor. The relationship be-
tween the Lorenz equations and our equations is dis-
cussed.

1. Introduction

The chaotic waterwheel, invented by Malkus and
Howard in 1970s [1, 2], displays random reversals of ro-
tational motion that are governed by the Lorenz equa-
tions [3, 4]. The chaotic motion is a realization of the
Lorenz attractor often referred to as the double scroll.
The Lorenz equations, which were derived using mode
truncation from the Boussinesq-Oberbeck equations,
are an oversimplified physical model for the Rayleigh-
Bénard convection heated from below. In the chaotic
waterwheel, the three physical forces that drive ther-
mal convective flows, i.e., buoyancy, frictional force
and thermal dissipation, are simulated by the gravity
of water, the frictional force on the axis of the water-
wheel and the leakage of water from the vessels of the
waterwheel, respectively. In this context, the water-
wheel is subject to the physics of thermal convection.

Being inspired by the chaotic waterwheel, we have
developed a chaotic gas turbine that displays random
reversals of rotational motion. Although the three
physical forces driving thermal convection are simu-
lated as well in our gas turbine in a similar manner
to the chaotic waterwheel to model the dynamical be-
havior of convective heat flows, the rotational motion
of our gas turbine appears to be more complex than
that of the chaotic waterwheel. As will be shown in
this paper, it turns out that our machine obeys dif-
ferent equations of motion from those of the chaotic
waterwheel and the nondimensionalized expression of
our equations may be referred to as augmented Lorenz
equations. In this paper, we show the equations of

motion of our gas turbine, assess their performance
through the comparison of numerical solutions with
experimentally observed angular velocity of the tur-
bine as a function time and discuss the relationship
between the Lorenz equations and our equations.

2. Chaotic Gas Turbine and its Equations of
Motion

In this section, we give a brief description about our
gas turbine. Details will be shown [5]. Figure 1 shows a
photograph of the rotor of our gas turbine. The whole
structure of the turbine can be seen on the video in
[4]. The schematic of the rotor is depicted in Fig. 2.
Our gas turbine is of planar type that is often used for
gas turbine engines as micro-electro-mechanical power
systems [6, 7]. The turbine has a stainless steel ro-
tor sandwiched in three layers of acrylic plates. The
diameter of the rotor is 40 [mm]. Thin flat turbine
blades are settled on the rotor with radial symmetry.
As shown in Fig. 2, the air inflow impinges the turbine
blades near the inlet within ±φ about the central hor-
izontal axis of the turbine. This simulates buoyancy
in thermal convection. Part of the air leaks out of
the turbine through the narrow channels on the rotor,
which simulates thermal dissipation in thermal convec-
tion. The frictional force is generated by a hydrostatic
thrust bearing.

Under the assumptions of infinitely many turbine
blades with a negligible thickness, the working fluid
as an ideal gas and the driving force due to air inflow
pressure concentrating at the center of mass of the
blade located at the distance r from the center of the
rotor, the equations of motion can be expressed as the
following system of ordinary differential equations.

ȧ = ωnb − (K + α)a , (1)

ḃ = −ωna− (K + α)b +
2αPin

π
n−1W , (2)

ω̇ = −vω

I
+

Sr

I
tr(Φa) , (3)

where ω denotes the angular velocity of the rotor
whose inertial moment is approximately I = 1.5 ×
10−5 [kgm2], α and K are constants associated with

2011 International Symposium on Nonlinear Theory and its Applications
NOLTA2011, Kobe, Japan, September 4-7, 2011

- 13 -



the air inflow and the air leakage, respectively, Pin is
the air inflow pressure, v is the damping rate of fric-
tion, S is the area of the blade, and tr(·) represents the
diagonal sum of a matrix. Here, the diagonal compo-
nents of N×N square diagonal matrices with N → ∞ ,

a =

⎛
⎜⎜⎜⎜⎝

a1 0 · · · 0

0 a2
. . .

...
...

. . . . . . 0
0 · · · 0 aN

⎞
⎟⎟⎟⎟⎠

and

b =

⎛
⎜⎜⎜⎜⎝

b1 0 · · · 0

0 b2
. . .

...
...

. . . . . . 0
0 · · · 0 bN

⎞
⎟⎟⎟⎟⎠

represent the sinusoidal and cosinusoidal Fourier coef-
ficients of the air inflow pressure, respectively. In the
Fourier expansion of the inflow pressure, the following
diagonal matrices are defined:

n =

⎛
⎜⎜⎜⎜⎝

1 0 · · · 0

0 2
. . .

...
...

. . . . . . 0
0 · · · 0 N

⎞
⎟⎟⎟⎟⎠

,

W =

⎛
⎜⎜⎜⎜⎝

sin φ 0 · · · 0

0 sin 2φ
. . .

...
...

. . . . . . 0
0 · · · 0 sinNφ

⎞
⎟⎟⎟⎟⎠

and Φ = diag
(
φ − 1

2 sin 2φ · · · 1
n−1 sin(n − 1)φ −

1
n+1 sin(n + 1)φ · · · 1

N−1 sin(N − 1)φ − 1
N+1 sin(N +

1)φ
)

. It turns out that our equations of motion are
equivalent to an augmented version of the Lorenz equa-
tions, as will be show in the next section.

3. Results and Discussion

To verify the validity of Eqs.(1)–(3), we manufac-
tured the turbine, observed the angular velocity of the
rotor as a function of time and compared numerical
solutions of the equations with the experimental data.
The turbine has 24 blades and the adjacent angle be-
tween blades is approximately π/12 ≈ 0.26 [rad]. To
measure the angular velocity ω(t), a couple of photo-
electric sensors were placed above the turbine at two
locations off-symmetrical with respect to the central
horizontal axis of the turbine. The sensor systems
recorded the times at which two turbine blades crossed
the two light beams (the two red spots on the rotor in

Figure 1: Actual chaotic gas turbine.

-
inflow

outflow

Figure 2: Schematic of chaotic gas turbine.

the video shown in [4]) that emanated from the sen-
sor systems. The difference in reflectance between the
blade surface and the rotor body allows the sensor sys-
tems to detect the blades crossing the light spots. The
off-symmetrical setting of the sensors enables us to de-
tect changes in the direction of rotation. With the
adjacent angle between blades and the time for the
blades to cross either of the light spots, the angular
velocity of the rotor, as well as its sense of rotation,
can be estimated as a function of time, although the
data points on the time series are not equidistant in
time.

Figure 3 shows a time series of ω(t) observed for
the turbine operated under 20.5 [kPa] of the air inflow
pressure (gauge pressure) and 5.3 [kPa] of the thrust
bearing pressure (589 data points). To obtain the cor-
responding numerical data, we ran Eqs. (1)–(3) us-
ing the fourth-order Runge-Kutta method with a time
width of 0.002 [sec] under the parameter settings of
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Figure 3: Actually observed angular velocity as a func-
tion of time (589 data points). The data points are not
equidistant in time. Pin = 20.5 [kPa] and thrust bear-
ing pressure = 5.3 [kPa] (gauge pressure).

Pin = 20.5 [kPa], N = 1000, v = 1.7×10−5 [kgm/sec],
φ = 0.36 [rad], S = 2 × 10−5 [m2], r = 0.015 [m],
K = 0.01 [sec−1] and α = 0.03 [sec−1]. Initial
125 000 data points were discarded to eliminate the
transient part that is dependent on the initial condi-
tions ω(0) = 0 and an(0) and bn(0) as Gaussian ran-
dom numbers with mean 0 and variance 1. Figure 4
shows numerical solutions ω(t) (125 000 data points).
Despite noise contamination and nonequidistant sam-
pling in time of the experimental data, Fig. 4 seems to
capture the overall feature of the corresponding actual
data.

Figure 5 shows the power spectra of numerical ω(t)
estimated from 65536 data points. The power spec-
tra have a broadband structure with no sharp peaks.
Hence, the rotational motion of the turbine can be
considered chaotic.

To make clear the relationship between our equa-
tions of motion and the Lorenz equations, we nondi-
mensionalize Eqs. (1)–(3) using the following equa-
tions. Details will be shown in [5].

a = δY , (4)

b = βZ +
2αPin

(K + α)π
n−1W , (5)

ω = tr(γX) , (6)
t = Tτ ,

where X, Y and Z are dimensionless N × N matri-
ces with N → ∞, β, δ and γ are square coefficient
matrices, and τ and T are a dimensionless time and a
coefficient, respectively. Introducing a scalar variable
X = tr((n−1)2X), we obtain a dimensionless expres-
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Figure 4: Numerically calculated angular velocity as a
function of time (125 000 data points). N = 1000. The
data points are equidistant in time. Pin = 20.5 [kPa].

sion of the equations of motion as

dX

dτ
= σ

[
tr

(
(n−1)2Y

) − X
]

, (7)

dY
dτ

= RX − nZX − Y , (8)

dZ
dτ

= nYX − Z , (9)

σ =
v

I(K + α)
, (10)

R =
2αSrPin

(K + α)2vπ
n2ΦW . (11)

When N = 1, the nodimensionalized equations are
exactly equivalent to the Lorenz equations with an
aspect ratio of unity. Hence, the nodimensionalized
equations of motion can be said to be an augmented
version of the Lorenz equations, which are different
from the previous extensions of the Lorenz equations
studied in [8, 9]. We may call our nondimesionalized
equations as augmented Lorenz equations. The aug-
mented Lorenz equations can be viewed as a network
of N Lorenz subsystems with scaled Rayleigh num-
bers defined by Eq. (11). This suggests that the aug-
mented Lorenz equations may inherit the dynamical
nature of the Lorenz equations such as synchronizabil-
ity between augmented Lorenz oscillators [10].

4. Conclusions

We have developed the chaotic gas turbine sub-
ject to the augmented Lorenz equations. The aug-
mented Lorenz equations can be viewed as a network
of N Lorenz subsystems with N → ∞ sharing the
nondimensionalized angular velocity X as the central
node. The overall feature of the temporal fluctuations
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Figure 5: Power spectra of numerical angular velocity
(N = 1000). 65536 data points are used for spectral
estimation. Pin = 20.5 [kPa].

in the angular velocity might be reminiscent of the
mean wind reversals observed for actual turbulent heat
flows at high Rayleigh numbers [11]–[14]. The dynam-
ical properties of the augmented Lorenz equations and
their applications are open questions to be solved in
our future studies.
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