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Abstract—In this work, a novel resonator model with

Coulomb damping has been developed. Fitting analysis be-

tween simulation results and experimental data shows that

the proposed model exhibits better performance compared

to the conventional mass-spring with viscous dampers

model. The piecewise characteristics existing in the pro-

posed model also show a rich variety of nonlinear be-

haviour.

1. Introduction

Applying multiple degrees of freedom (MDOF) design

concepts to dynamic vibration absorbers has been previ-

ously used to achieve a number of performance improve-

ments. For instance, MDOF was introduced into the vi-

bratory micromachined gyroscopes in [1], which achieves

a six times larger bandwidth than a conventional single

mass system. Furthermore, [2] shows by using 2-DOF de-

sign, the micromachined gyroscopes can also be expected

to yield reliable, robust and low-cost for high-volume ap-

plications.

[3] improved the piezoelectric VEH efficiency by intro-

ducing additional masses, which make use of multiple res-

onant frequencies. [4] presented numerical examples to il-

lustrate that with proper selection of the design parameters

of the 2-DOF resonator, the harvested power can be ampli-

fied by a factor of 20 as compared to the conventional 1-

DOF resonator and the effective bandwidth of the harvester

can be widened 25%.

However, current numerical models used in multi-DOF

resonator analysis neglect some small term, such as gravity,

viscous friction either caused by surrounding air or spring

structure itself and dry friction caused by the device’s sup-

portive structures.

In this work, we develop a more accurate model for im-

proved estimation of multi-DOF VEH behaviour. The 2-

DOF resonator presented in this work is inspired by the

vibration energy harvester reported in [5].

2. Model Description

The 2-DOF resonator consists of two mass-spring sys-

tems arranged in series as shown in Fig.1a, where the two

springs have stiffness k1 and k2. When spring k2 is trans-

ferring load to mass m1 we describe the resonator as un-
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Figure 1: Schematic of the 2-DOF resonator working in

different region: (a) attached-vibration and (b) detached-

vibration modes of operation.

Table 1: Measured characteristics of the resonator

m1 k1 fn,1 L1 d

58.31 g 1.23 N/mm 23.1 Hz 43 mm 12 mm

m2 k2 fn,2 L2 kim

4.75 g 0.36 N/mm 43.8 Hz 23.5 mm 0.36 N/mm

dergoing attached-vibration. In our design, the connection

between spring k2 and mass m1 is not solid, meaning that

spring k2 cannot undergo tensile loading and mass m2 can

be separated from mass m1 during vibration, as shown in

Fig.1b. We describe the resonator working in this phase

of operation as undergoing detached-vibration. Mechani-

cal damping in Fig.1 consists of two parts: spring viscous

structural damping c1 and c2 and viscous air damping b1

and b2. The mass supporting structure introduces an addi-

tional frictional damping factor that is discussed in Section

2.2.

One extra spring kim with damping factor cim is fixed on

the top of the package acting as end-stopper to protect the

device. L1 and L2 are the length of two springs plus the

thickness of two masses respectively. d is the gap between

mass m2 and the end-stopper.

Table 1 summarizes the measured characteristics of the

resonator, where fn,1 and fn,2 are the natural frequencies of

mass-spring systems m1-k1 and m2-k2 respectively.
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2.1. Conventional Model

The conventional 2-DOF model consists of two mass-

spring systems and viscous dampers representing air and

structural damping.

The movements of the masses are constrained within one

dimension, noted axis X. X0, X1 and X2 are the absolute

displacement of the moving base, mass m1 and mass m2

with respect to a fixed ground respectively. The system

governing equation for attached-vibration can be written as

below:














































m1Ẍ1 = −k1(X1 − X0 − L1) − c1(Ẋ1 − Ẋ0)

+k2(X2 − X1 − L2) + c2(Ẋ2 − Ẋ1)

−b1(Ẋ1 − Ẋ0) − m1g

m2Ẍ2 = −k2(X2 − X1 − L2) − c2(Ẋ2 − Ẋ1)

−b2(Ẋ2 − Ẋ0) − m2g − Fim

(1)

where c1(Ẋ1 − Ẋ0) and c2(Ẋ2 − Ẋ1) are the spring damping

force [5], b1(Ẋ1− Ẋ0) and b2(Ẋ2− Ẋ0) are air damping force

[6], Fim is the end-stopper force, and g = 9.8m/s2 is the

gravitational acceleration.

The base movement is represented as Ẍ0 =

Aext sin(ωextt + ϑ0), where Aext, ωext and ϑ0 are the

amplitude, angular frequency and initial phase respec-

tively. We define new variables:

x1 = X1 − X0 − L1 and x2 = X2 − X0 − L2 − L1 (2)

and substituting (2) into (1) for the attached case gives:


































m1 ẍ1 = −k1x1 − c1 ẋ1 − m1Aext sin(ωextt + ϑ0)

−b1 ẋ1 + k2(x2 − x1) + c2(ẋ2 − ẋ1) − m1g

m2 ẍ2 = −k2(x2 − x1) − c2(ẋ2 − ẋ1) − b2 ẋ2 − m2g

−m2Aext sin(ωextt + ϑ0) − Fim

(3a)

Correspondingly, the governing equation for detached-

vibration shown in Fig.1b can be written as:


































m1 ẍ1 = −k1x1 − c1 ẋ1 − b1 ẋ1 − m1g

−m1Aext sin(ωextt + ϑ0)

m2 ẍ2 = −b2 ẋ2 − m2g − Fim

−m2Aext sin(ωextt + ϑ0)

(3b)

Note that the interaction between m1 and m2 has been re-

moved compared to (3a).

The end stopper force Fim can be described as follow:

Fim =

{

kim(x2 − d) + cim ẋ2 if (x2 − d) > 0

0 if (x2 − d) ≤ 0
(4)

From the description above we can get the system piece-

wise condition that determines attached and detached con-

ditions as x2 − x1 = 0. Thus, we get:

System Governing Eq.

{

Eq.(3a) if (x2 − x1) ≤ 0

Eq.(3b) if (x2 − x1) > 0
(5)

2.2. Model with Coulomb Damping

In the real experimental setup, the basic holding support

for the resonator is a non-magnetic metallic central rod and

each mass has a guide hole through the middle. The masses

can hit the central rod so the dry friction (Coulomb damp-

ing) can be generated from the interaction of the masses

and central rod. This dry friction force is a function of

the normal force applied by the central rod against the

masses and in a direction opposite to relative speed be-

tween them. For simplifying the analysis, assuming the

dry friction force can be represented as:














FD,1 = F f ,1 · sgn(ẋ1)

FD,2 = F f ,2 · sgn(ẋ2)
(6)

where F f ,1 and F f ,2 are the average dry friction force ap-

plied to mass m1 and m2 respectively. So we can rewrite (3)

as below:






























































m1 ẍ1 = −k1x1 − c1 ẋ1 − b1 ẋ1 − F f ,1 · sgn(ẋ1)

−m1Aext sin(ωextt + ϑ0) − m1g

+k2(x2 − x1) + c2(ẋ2 − ẋ1)

m2 ẍ2 = −k2(x2 − x1) − c2(ẋ2 − ẋ1) − b2 ẋ2

−m2Aext sin(ωextt + ϑ0) − m2g

−Fim − F f ,2 · sgn(ẋ2)

(7a)



































m1 ẍ1 = −k1x1 − c1 ẋ1 − b1 ẋ1 − F f ,1 · sgn(ẋ1)

−m1Aext sin(ωextt + ϑ0) − m1g

m2 ẍ2 = −m2Aext sin(ωextt + ϑ0) − m2g

−Fim − F f ,2 · sgn(ẋ2) − b2 ẋ2

(7b)

And we have:

System Governing Eq.

{

Eq.(7a) if (x2 − x1) ≤ 0

Eq.(7b) if (x2 − x1) > 0
(8)

2.3. Parameter Fitting

The damping coefficients were derived through fitting

analysis between the theoretical model simulation results

and the experimental results. The displacement data were

measured by a laser displacement gauge outside the device.

Due to the constraint of the measuring instruments, we use

absolute displacement here. Due to the rich nonlinear be-

haviour existing in this system, we use RMS displacement

value to evaluate the fitting results. The experiments are

performed under two acceleration levels, i.e. Aext = 0.3g

and Aext = 0.5g, over the 12Hz to 30Hz (1Hz step) external

frequency range.

Table 2 summarizes the derived characteristics of the res-

onator. b1 and c1 have the same impact in the equations. In

the model with dry friction, the air damping force applied

to mass m2 is totally overwhelmed by the Coulomb damp-

ing force F f ,2, thus b2 can be neglected in this model.

Fig.2 to Fig.4 show the fitted results for the three cases

listed in table 2 respectively. The set 1 conventional model

fitting parameters were optimized for Aext = 0.3g condi-

tions. As can be seen in Fig.2 the simulation and exper-

imental matching accuracy for the m2 RMS displacement

is comparable while the matching accuracy for m1 is poor.

The set 2 conventional model parameters are optimized for

Aext = 0.5g conditions and Fig.3 show an improved match-

ing accuracy for the Aext = 0.5g case.

We estimate the fitting performance by calculating the

sum of the squares of the errors defining as below:
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Table 2: Fitting parameters of the resonator

Unit

Conventional

Model

Set 1 Set 2

Model with

Dry Friction

b1 + c1 N · s/m 2 1.6 0.8

c2 N · s/m 0.1 0.08 0.1

b2 N · s/m 0.03 0.025 0

F f ,1 N N/A 0.08

F f ,2 N N/A 0.002
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Figure 2: Fitting results of parameters set 1 of conventional

model. Grey lines represent experimental data and black

lines are simulation results. (a) m2 under Aext = 0.3 g,

(b) m1 under Aext = 0.3 g, (c) m2 under Aext = 0.5 g, (d)

m1 under Aext = 0.5 g.

S =
∑

(χsim,m1 − χraw,m1)2 +
∑

(χsim,m2 − χraw,m2)2 (9)

where χsim is the RMS displacement calculated from sim-

ulation results and χraw is the RMS displacement derived

from experimental results.

Table 3 summarizes the relative error S of each case.

Table 3: Relative error of each fitting set

Conventional

Model

Set 1 Set 2

Model with

Dry Friction

Aext = 0.3 g 1.39 7.29 1.06

Aext = 0.5 g 1.06 0.46 0.41

The fitting results illustrate that the model with Coulomb

damping is superior to the conventional model. The model

with Coulomb damping not only shows closer agreement

between experimental and simulation results for both ac-

celeration levels examined, but achieves these results using

the same fitting parameters, which is a significant improve-

ment over the conventional model performance.

3. Chaotic Behaviour

Due to the switching between the different configura-

tions, i.e. attached-vibration and detached-vibration, the

proposed 2-DOF resonator can present rich nonlinear be-

haviour.
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Figure 3: Fitting results of parameters set 2 of conventional

model. Grey lines represent experimental data and black

lines are simulation results. (a) m2 under Aext = 0.3 g,

(b) m1 under Aext = 0.3 g, (c) m2 under Aext = 0.5 g, (d)

m1 under Aext = 0.5 g.

15 20 25 30
0

0.5

1

x 10
−3 m

2
   0.3g

f
ext

m
2
 R

M
S
 D

is
p
.

(a)

15 20 25 30

1

2

3

4

5

x 10
−4 m

1
   0.3g

f
ext

m
1
 R

M
S
 D

is
p
.

(b)

15 20 25 30
0

1

2

3

4

x 10
−3 m

2
   0.5g

f
ext

m
2
 R

M
S
 D

is
p
.

(c)

15 20 25 30

2

4

6

8

10

x 10
−4 m

1
   0.5g

f
ext

m
1
 R

M
S
 D

is
p
.

(d)

Figure 4: Fitting results of proposed model with Coulomb

damping. Grey lines represent experimental data and black

lines are simulation results. (a) m2 under Aext = 0.3 g,

(b) m1 under Aext = 0.3 g, (c) m2 under Aext = 0.5 g, (d)

m1 under Aext = 0.5 g.

A bifurcation diagram of local maximum value of mass

m2 has been obtained from simulation by keeping Aext =

0.5g while making a frequency sweep from 12Hz to 30Hz

as shown in Fig.5a. The sampled local maximum points

are derived from 200 external cycles after 500 external cy-

cles of transient time. T-periodic orbit can be observed

when the external frequency fext < 16Hz or fext > 28Hz

which can be expected because the resonator kept work-

ing in attached-vibration region so there was no switching

occurred within this range.

Correspondingly, nT-periodic orbit can be observed in

most situations where the switching between the different

configurations occurred. For example, 3T-periodic orbit is

shown in Fig.5b and a chaotic orbit is shown in Fig.5c. But

there is still some T-periodic orbits existing even when the

switching occurred.

Similarly, another bifurcation diagram of mass m2 was

obtained from simulation by keeping fext = 21Hz while
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Figure 5: Aext = 0.5 g (a) Bifurcation diagram of local

maximum value of mass m2 over the 12 Hz to 30 Hz exter-

nal frequency range. (b) Time domain waveform and state

space trajectory under fext = 17.4 Hz. (c) Time domain

waveform and state space trajectory under fext = 20.5 Hz.

making an external amplitude sweep from 0.15g to 0.5g as

shown in Fig.6a. These nonlinear behaviour existing in this

2-DOF resonator means that the prediction of the average

displacement could be more useful than the prediction em-

phasizing the short term trajectory.

4. Conclusion

In this work, three different data fitting results between

simulation and experiment has been shown. Two of them

are derived from the conventional 2-DOF resonator model

and the other one is derived from a proposed 2-DOF res-

onator model with Coulomb damping. The fitting analysis

shows that the proposed model can predict the real systems

behaviour much better by using the fixed fitting parameters

compared to the conventional model.

In this work, two bifurcation diagrams of the resonator

are also presented. One is for swept external frequency

with fixed amplitude and another is for swept external am-

plitude with fixed frequency. Both of them show a rich

variety of nonlinear behavior.
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