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Abstract—In this work, a novel resonator model with
Coulomb damping has been developed. Fitting analysis be-
tween simulation results and experimental data shows that
the proposed model exhibits better performance compared
to the conventional mass-spring with viscous dampers
model. The piecewise characteristics existing in the pro-
posed model also show a rich variety of nonlinear be-
haviour.

1. Introduction

Applying multiple degrees of freedom (MDOF) design
concepts to dynamic vibration absorbers has been previ-
ously used to achieve a number of performance improve-
ments. For instance, MDOF was introduced into the vi-
bratory micromachined gyroscopes in [1], which achieves
a six times larger bandwidth than a conventional single
mass system. Furthermore, [2] shows by using 2-DOF de-
sign, the micromachined gyroscopes can also be expected
to yield reliable, robust and low-cost for high-volume ap-
plications.

[3] improved the piezoelectric VEH efficiency by intro-
ducing additional masses, which make use of multiple res-
onant frequencies. [4] presented numerical examples to il-
lustrate that with proper selection of the design parameters
of the 2-DOF resonator, the harvested power can be ampli-
fied by a factor of 20 as compared to the conventional 1-
DOF resonator and the effective bandwidth of the harvester
can be widened 25%.

However, current numerical models used in multi-DOF
resonator analysis neglect some small term, such as gravity,
viscous friction either caused by surrounding air or spring
structure itself and dry friction caused by the device’s sup-
portive structures.

In this work, we develop a more accurate model for im-
proved estimation of multi-DOF VEH behaviour. The 2-
DOF resonator presented in this work is inspired by the
vibration energy harvester reported in [5].

2. Model Description

The 2-DOF resonator consists of two mass-spring sys-
tems arranged in series as shown in Fig.1a, where the two
springs have stiffness k; and k,. When spring k; is trans-
ferring load to mass m; we describe the resonator as un-
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Figure 1: Schematic of the 2-DOF resonator working in
different region: (a) attached-vibration and (b) detached-
vibration modes of operation.

Table 1: Measured characteristics of the resonator

my k1 Jnt L d

5831g 1.23N/mm 23.1Hz 43mm 12 mm

my kz ﬁ1,2 L2 kim

475¢ 036 N/mm 43.8Hz 23.5mm 0.36 N/mm

dergoing attached-vibration. In our design, the connection
between spring k, and mass m; is not solid, meaning that
spring k> cannot undergo tensile loading and mass m, can
be separated from mass m; during vibration, as shown in
Fig.1b. We describe the resonator working in this phase
of operation as undergoing detached-vibration. Mechani-
cal damping in Fig.1 consists of two parts: spring viscous
structural damping c¢; and ¢, and viscous air damping b
and b,. The mass supporting structure introduces an addi-
tional frictional damping factor that is discussed in Section
2.2.

One extra spring k;,, with damping factor c¢;, is fixed on
the top of the package acting as end-stopper to protect the
device. L; and L, are the length of two springs plus the
thickness of two masses respectively. d is the gap between
mass m; and the end-stopper.

Table 1 summarizes the measured characteristics of the
resonator, where f,, | and f, , are the natural frequencies of
mass-spring systems m,-k; and m;-k, respectively.
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2.1. Conventional Model

The conventional 2-DOF model consists of two mass-
spring systems and viscous dampers representing air and
structural damping.

The movements of the masses are constrained within one
dimension, noted axis X. Xy, X; and X, are the absolute
displacement of the moving base, mass m; and mass m,
with respect to a fixed ground respectively. The system
governing equation for attached-vibration can be written as
below:

m X, = -k (X; — Xo — L) — c1(X; — Xo)

+hy(Xy — Xy — Lp) + c2(X2 — X))

—bi(X) — Xo) —mig ()
myXs = —ka(X2 — X1 — Lp) — c2(X2 — X))

—by(Xy — Xo) —myg — Fim

where ¢;(X; — Xp) and ¢,(X; — X|) are the spring damping
force [5], b1(X| —Xo) and by(X, — Xo) are air damping force
[6], Fi, is the end-stopper force, and g = 9.8m/s? is the
gravitational acceleration.

The base movement is represented as X, =
Aeyr SiN(Weyyt + 99), where A.y, wey and ¥y are the
amplitude, angular frequency and initial phase respec-
tively. We define new variables:

X1=X1—X()—L1 and X2=X2—X()—L2—L1 (2)
and substituting (2) into (1) for the attached case gives:
mi¥) = —kix) — c1X1 — m1Aey Sin(wWext + o)
—b1x1 + ka(x2 — x1) + c2(dk2 — X1) —mg (3a)
maXy = —ka(x2 — x1) — c2(%2 — X1) — baky — M2g
_mZAext Sin(wextt + ﬂO) - Fim
Correspondingly, the governing equation for detached-
vibration shown in Fig.1b can be written as:
miX = —kjx; —ci1X; — b1x —mg
) _mlfqext Sin(wexrt + ﬁO) (3b)
my¥y = —byXo —mog — Fiy,
_mZAext Sin(wextt + ﬂO)
Note that the interaction between m; and m, has been re-
moved compared to (3a).
The end stopper force Fj,, can be described as follow:
{k,-m(xz - d) + CimX2 if ()Cz - d) >0

Fi, = .
0 if (x,—-d)<0

“4)
From the description above we can get the system piece-
wise condition that determines attached and detached con-
ditions as x, — x; = 0. Thus, we get:
Eq.(3a) if (xp—x1) <0

System Governing Eq.{Eq (3b) if (xo—x1)>0 )

2.2. Model with Coulomb Damping

In the real experimental setup, the basic holding support
for the resonator is a non-magnetic metallic central rod and
each mass has a guide hole through the middle. The masses

can hit the central rod so the dry friction (Coulomb damp-
ing) can be generated from the interaction of the masses
and central rod. This dry friction force is a function of
the normal force applied by the central rod against the
masses and in a direction opposite to relative speed be-
tween them. For simplifying the analysis, assuming the
dry friction force can be represented as:

{FD,l = Fy1 - sgn()

— . (6)
Fpa = Fyp - sgn(is)

where Fﬂ 1 and ffg are the average dry friction force ap-
plied to mass m; and m; respectively. So we can rewrite (3)
as below:

my¥ = —kix; — c1%; — byxy — Fpy - sgn(¥p)
_mlAext Sin(wextt + 190) —mg
+ko(x2 — x1) + (%2 — X1)

(72)
myiy = —ka(x2 — x1) — c2(%2 — X1) — bk
—MaA ey SIN(Wenit + ) — mag
—Fim — Fra - sgn(iz)
my¥) = —kix — c1%; — byxy — Fpy - sgn(ip)
=My A ey SIN(Wexit + Po) — mig (7b)

Mma¥y = —MoA ey SIN(Wexst + Po) — Mog

—Fim — Frp - sgn(ia) — oo
And we have:
Eq.(7a) if (xp—x1) <0

System Governing Eq. { Eq.(7b) if (x2—x1) >0 ®

2.3. Parameter Fitting

The damping coefficients were derived through fitting
analysis between the theoretical model simulation results
and the experimental results. The displacement data were
measured by a laser displacement gauge outside the device.
Due to the constraint of the measuring instruments, we use
absolute displacement here. Due to the rich nonlinear be-
haviour existing in this system, we use RMS displacement
value to evaluate the fitting results. The experiments are
performed under two acceleration levels, i.e. A, = 0.3g
and A, = 0.5g, over the 12Hz to 30Hz (1Hz step) external
frequency range.

Table 2 summarizes the derived characteristics of the res-
onator. b; and c; have the same impact in the equations. In
the model with dry friction, the air damping force applied
to mass m; is totally overwhelmed by the Coulomb damp-
ing force ff,g, thus b, can be neglected in this model.

Fig.2 to Fig.4 show the fitted results for the three cases
listed in table 2 respectively. The set 1 conventional model
fitting parameters were optimized for A,,, = 0.3g condi-
tions. As can be seen in Fig.2 the simulation and exper-
imental matching accuracy for the m, RMS displacement
is comparable while the matching accuracy for m; is poor.
The set 2 conventional model parameters are optimized for
A,y = 0.5g conditions and Fig.3 show an improved match-
ing accuracy for the A,,, = 0.5g case.

We estimate the fitting performance by calculating the
sum of the squares of the errors defining as below:
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Table 2: Fitting parameters of the resonator

. Conventional Model with
Unit Model Drv Friction
Set1  Set2 y et
bi+c; N-s/m 2 1.6 0.8
2 N-s/m 0.1 0.08 0.1
by N-s/m 0.03 0025 O
Fri N N/A 0.08
Fgp N N/A 0.002
10 m, 0.3g 107 m, 0.5g
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Figure 2: Fitting results of parameters set 1 of conventional
model. Grey lines represent experimental data and black
lines are simulation results. (a) m, under A.,, = 0.3 g,
(b) m; under A.,; = 0.3 g, (c) my under A,y = 0.5 g, (d)
mj under A., = 0.5 g.

S = Z(Xsim,ml _)(raw,ml)2 + Z(XSim,mZ _)(raw,mZ)2 C)]

where yim is the RMS displacement calculated from sim-
ulation results and yaw is the RMS displacement derived
from experimental results.

Table 3 summarizes the relative error S of each case.

Table 3: Relative error of each fitting set

Conventional Model with
Model Dry Friction
Set 1 Set 2 y

Ay =03g 1.39 7.29 1.06

Ay =05g 1.06 0.46 0.41

The fitting results illustrate that the model with Coulomb
damping is superior to the conventional model. The model
with Coulomb damping not only shows closer agreement
between experimental and simulation results for both ac-
celeration levels examined, but achieves these results using
the same fitting parameters, which is a significant improve-
ment over the conventional model performance.

3. Chaotic Behaviour

Due to the switching between the different configura-
tions, i.e. attached-vibration and detached-vibration, the
proposed 2-DOF resonator can present rich nonlinear be-
haviour.
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Figure 3: Fitting results of parameters set 2 of conventional
model. Grey lines represent experimental data and black
lines are simulation results. (a) m, under A., = 0.3 g,
(b) m; under A., = 0.3 g, (c) my under A.;, = 0.5 g, (d)
m under A.,; = 0.5 g.
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Figure 4: Fitting results of proposed model with Coulomb
damping. Grey lines represent experimental data and black
lines are simulation results. (a) m, under A., = 0.3 g,
(b) m; under A,, = 0.3 g, (c) m under A.;, = 0.5 g, (d)
mj under A,,, = 0.5 g.

A bifurcation diagram of local maximum value of mass
my has been obtained from simulation by keeping A,y =
0.5g while making a frequency sweep from 12Hz to 30Hz
as shown in Fig.5a. The sampled local maximum points
are derived from 200 external cycles after 500 external cy-
cles of transient time. T-periodic orbit can be observed
when the external frequency f.,; < 16Hz or f,,, > 28Hz
which can be expected because the resonator kept work-
ing in attached-vibration region so there was no switching
occurred within this range.

Correspondingly, nT-periodic orbit can be observed in
most situations where the switching between the different
configurations occurred. For example, 3T-periodic orbit is
shown in Fig.5b and a chaotic orbit is shown in Fig.5c. But
there is still some T-periodic orbits existing even when the
switching occurred.

Similarly, another bifurcation diagram of mass m, was
obtained from simulation by keeping f.,, = 21Hz while
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Figure 5: A, = 0.5 g (a) Bifurcation diagram of local
maximum value of mass m, over the 12 Hz to 30 Hz exter-
nal frequency range. (b) Time domain waveform and state
space trajectory under f.,; = 17.4 Hz. (c) Time domain
waveform and state space trajectory under f,,, = 20.5 Hz.

making an external amplitude sweep from 0.15g to 0.5g as
shown in Fig.6a. These nonlinear behaviour existing in this
2-DOF resonator means that the prediction of the average
displacement could be more useful than the prediction em-
phasizing the short term trajectory.

4. Conclusion

In this work, three different data fitting results between
simulation and experiment has been shown. Two of them
are derived from the conventional 2-DOF resonator model
and the other one is derived from a proposed 2-DOF res-
onator model with Coulomb damping. The fitting analysis
shows that the proposed model can predict the real systems
behaviour much better by using the fixed fitting parameters
compared to the conventional model.

In this work, two bifurcation diagrams of the resonator
are also presented. One is for swept external frequency
with fixed amplitude and another is for swept external am-
plitude with fixed frequency. Both of them show a rich
variety of nonlinear behavior.
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