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Abstract—The observation of a scale free degree distri-
bution in real disease incidence data tends to suggest that
such diseases would be difficult, or in fact impossible to
control. Moreover, it has been shown that the fat tail degree
distribution for scale free networks implies that (SIS type)
disease transmission cannot be eradicated for any nonzero
level of infectivity. Nonetheless, we have found that when
one considers a voluntary immunisation strategy, or even,
disease transmission in multiple waves, the presence of hub
nodes actually becomes an advantage. Highly connected
nodes will be immunised earlier (or conversely, quickly en-
counter an early and less virulent strain of infection). As a
consequence of the frailty of scale-free networks, the re-
moval of hub nodes will actually reduce the infectivity of
the disease. In this paper we consider disease transmission
on scale free networks and on more stratified networks, mo-
tivated by structures observed in society. We find that the
level of infection for scale free networks is actually only
moderately higher than for equivalent structured networks.
Nonetheless, in finite size networks extinction occurs at a
higher threshold for structured (non-scale free) networks.
Conversely, these structured networks exhibit broader (in
time) peaks in the disease outbreak.

1. Introduction

Since the recent rediscovery of small world and scale
free networks by Watts and Strogatz [7] and Barabasi and
Albert [1] transmission of infectious agents on such net-
works have been one of the doctrinaire examples. Indeed,
it is natural to consider that for diseases for which personal
contact is required to support transmission (as opposed to
air borne pathogens) that the degree of connectivity be-
tween individuals will have an effect on the transmission
of the disease.

The importance of this idea was given weight by the
work of Boguñá and colleagues who showed that disease
transmission on a scale free network will persist for any
non-zero value of transmission rate [2]. This is in direct
contrast with our experience of homogeneous mixing (the
standard differential equation based model of disease trans-
mission) for which there always exists a finite non-zero
threshold below which an infection will decrease to zero,
and above which it will remain endemic.

Nonetheless, it is important to examine the result of
Boguñá et al. a little more closely. Essentially, the re-

sult considers the case of SIS disease transmission on a
perfect scale-free network. That is, there are two disease
states, susceptible (S) and infected (I). Susceptible individ-
uals become infected with some probability λ if they have
an infected neighbour. Without loss of generality, infected
individuals recover and become susceptible with rate 1. If
one assumes full connectivity then we have the case of dis-
ease transmission on a homogeneous system and there exist
a critical rate λc > 0 such that if λ < λc the disease will be
eradicated. The remarkable result of Bogñá et al. is that
if one examines disease transmission on a scale free net-
work (i.e. less than full connectivity) then the exists no
such λc > 0. However, the fundamental requirement for
this to occur is that one must consider a infinite perfect
scale free network (in [2], the authors also only consider
the case where the degree exponent is between 2 and 3 —
but this restriction is not entirely necessary [5]). That is,
the network is infinitely large and consists of nodes such
that the probability P of a node having degree k is given by

P(k) ≈ Ck−γ (1)

for 2 < γ ≤ 3.
Boguñá and colleagues show that λc may be calculated

exactly

λc =
< k >
< k2 >

(2)

and, of course, for degree distribution (1) both < k > and
< k2 > are infinite (hence, γ < 3 is actually sufficient to
ensure their result). Note, however, that this presumes that
the network is uncorrelated (in obtaining (2) the authors as-
sume that the degree distribution (1) applies equally to all
nodes). Moreover, the network must be infinite (for other-
wise a finite sample variance exists).

In [5], Small, Walker and Tse presented the first evi-
dence that such behaviour could arise in the real world.
They showed that the degree distribution of a network in-
ferred from the global spatial temporal distribution of avian
influenza outbreaks (in animal populations) cases actually
did follow a scale free distribution — in fact, the scale ex-
ponent of that distribution was about 1.2) [5]. However, it
was not clear that the result of Boguñá et al. could be ex-
tended to this situation. We had observed that the degree
distribution was highly assortative (high degree nodes tend
to connect to one another) [6] and we proposed a mecha-
nism by which such a network could arise [9]. Moreover,
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population N 106

proportion of school children pkids 0.3
mean number of children Nkids 2

class size c 30
school size s 30

mean degree (children) ` 5
links outside their own class (children) `class 2

links outside their own school (children) `school 1
mean degree (adults) γ 5

links to adults within the same school aschool 2

Table 1: Model parameters used in the community struc-
tured complex network model.

the network was certainly finite, so the question of whether
this was a good sampling of an underlying infinite network,
or whether the sample mean and variance would imply a
finite λc > 0 was unresolved. Moreover, we must note
that this network is only inferred from time series data: we
can not be certain that this necessarily captured the relevant
structure in the true transmission pathways.

In addition to the connectivity model of [2] being rather
idealised, the simple SIS dynamics also lacks some of the
complexity of the real world. In [8] Zhang and colleagues
consider the case where nodes can choose to receive vac-
cination, and that the decision to vaccinate is affected by
node degree (that is, those with a high degree have more
risk and therefore more reason to vaccinate). Under this
situation, the system behaviour is the opposite of that de-
scribed in [2]. That is, scale free networks, with hub nodes
being more ready to vaccinate actually inhibit the spread of
disease when compared to homogeneous mixing.

In this paper we report out recent attempts to address
this problem from another angle. Rather than pursuing the
pure scale free networks popular in the physics literature
we attempt to construct a communal model of connectivity
within a city — the basic defining characteristic of which is
the localisation of children within schools — and we study
the transmission dynamics within this system. This net-
work is structured in such a way that it contains distinct
layers (adults and children) and has both characteristics of
scale free and small world networks. We examine the be-
haviour of disease transmission on this network to deter-
mine whether the results from computational physics can
also be applied to this somewhat more realistic model.

2. The model

The purpose of this paper if to compare the behaviour
of networks with more realistic transmission topologies to
standard scale free complex networks in the vein of the
Barabasi-Albert (BA) model [1]. We assume two distinct
populations in the community: adults and children. Each
child attends a school and their network connections are
constrained by that school structure. Each adult is con-

Figure 1: Adjacency matrix for the community structured
complex network model. For ease of visualisation this sys-
tem has N = 104, c = 10 and s = 5. Other parameters
are the same. Children appear first (upper left most). The
clustering within schools and between schools is evident
along the main diagonal in the upper right. But, note that
links are otherwise relatively sparse (the axes of this figure
exaggerate the density of links in this region). Links be-
tween adults appear to follow a scale free like distribution
— note that the connections between these adult hubs and
the population of children are random.

nected in a scale-free fashion to a certain number of other
adults. Some adults are also parents, and in these cases they
are connected to their children and to fellow parents within
the same school. We assume that parents always occur in
pairs, and that each adult can be a member of at most one
such pairing.

Our network model necessitates a moderate number of
parameters, all of which can be given reasonably “realistic”
values: nonetheless, we would like to stress that our results
do not sensitively depend on these choices (for a “sensible”
range of values). The parameters are listed, along with our
chosen values in Table 1. The network has a total of N
nodes, pkidsN children (all assumed to be of school age)
and the remaining (1− pkids)N adults. Each family has two
adults and a mean Nkids children (following a Poisson dis-
tribution). Each child is linked to exactly ` other children of
which `class are in classes other than their own and `school are
outside their school (that is, most children are connected
only within that same school, and largely within the same
class).

This creates a network of children which is both hierar-
chical and clustered. Children are arranged in classes, with
dense links within classes. The classes are then arranged in
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Figure 2: Degree distribution for the community structured
complex network model and for the standard Barabasi-
Albert scale free network model.

schools, with moderate density of links between schools.
Links between schools are relatively sparse, but sufficient
to ensure that the resulting network is small world.

Each adult contributes γ links with preferential attach-
ment — leading to a scale free distribution. For parents
aschool of those links are restricted to be chosen from among
fellow parents of the same school attended by their chil-
dren. Hence, viewed in isolation from the children, the par-
ents form an independent scale free network. However, for
the adults that are also parents they are then connected di-
rectly to the hierarchical small world network of children.
A typical adjacency matrix of a network constructed with
this scheme is depicted in Fig. 1.

In Fig. 2 we depict the degree distribution for this net-
work and for an equivalent BA network. The societal net-
work has mean degree of 12.4. To construct a preferential
attachment scale free network with an equivalent mean de-
gree we add 7 links with each new node — doing so yields
a scale free network with a mean degree of 14. Similarly
the assortativity for the society network is 0.029; and for
the preferential attachment network is −0.0050. The mean
path length (computed from a random sampling of pairs of
points on each network) is 5.57±0.54 and 4.48±0.59 (mean
± standard deviation of 100 samples) respectively.

3. SIS disease dynamics

For each of the networks described in the previous sec-
tion we simulate the effect of SIS transmission dynamics
for various rates of infectivity λ. In Fig. 3 we report the
mean infected population as a function of time over 20 re-
alisations.

Despite the fact that both networks have similar connec-
tivity, similar degree and similar mean path lengths (the
scale free network being a little more highly connected) we
do see (as anticipated by the theoretical results of [2]) that
the scale free network supports a high incidence of infec-
tion. Nonetheless, the effect is rather less marked than one
might have expected. For moderate of large values of λ the
difference is only that the preferential attachment network
reaches the steady state infectivity level somewhat quicker.
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Figure 3: Comparative rate of spread of disease on a
BA network (red, solid) and the community structured
complex network described in the text (green dashed) for
λ = 0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 and
N = 106. We plot the mean of 20 realisations. For suffi-
ciently low rate of transmission λ = 0.01, 0.02 diseases on
both networks become extinct. For moderate transmission
λ = 0.03, 0.04, 0.05 disease on the community network be-
comes extinct, but on the scale free network remains en-
demic. For larger λ ≥ 0.1 transmission on both networks is
endemic and at similar levels (although the scale free net-
work is slightly larger).

In both scale free and the socially structure networks the
steady state level is very similar. Certainly, for moderate
levels of infectivity, there is a range of values λ = 0.03,
0.04 and 0.05 for which the preferential attachment scale
free network supports a contagion that becomes extinct on
the non scale free network. However, this range is quite
small and the asymptotic level of infection is rather low
(between 0.01% and 0.1% of the population1).

Finally, for small values of λ we note that both models
become extinct. As noted earlier, this is to be expected,
even for scale free networks. Since the networks used in
this study are finite one must expect λc > 0.

Now, we turn to the central issue of the current study —
what happens when a disease occurs in waves (and succes-
sive wave confer resistance)? (Or, equivalently, what is the
effect of vaccination?) We modify the above SIS model
by assigning an increased resistance to infection for a node
based on previous infection. Let α (0 ≤ α ≤ 1) be a con-
stant such that if a node has been infected on k previous
occasions, the rate of successive infection is reduced from
λ to αkλ. Fig 4 illustrated typical results. Note that if α = 1
this reduces to the standard SIS model, and if α = 0 it is
SIR.

As expected, the gradual conferment of immunity means

1Admittedly, this value is comparable to the incidence of SARS in
Hong Kong in 2003 [4, 3]

- 13 -



0 10 20 30 40 50 60 70 80 90 100
10−2

10−1

100

101

102

103

104

105

106
25

Figure 4: Comparative rate of spread of disease on a
BA network (red, solid) and the community structured
complex network described in the text (green dashed) for
λ = 0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 and
N = 106. We plot the mean of 20 realisations. We set
α = 0.25 so that each infection of a node will mean a 75%
lower risk of reinfection.

that the disease eventually becomes extinct. Moreover, the
rate of extinction (the total duration of the infection) for
the structure community network is consistently less than
for the BA network. However, in the structured network
we also observe a broader initial peak. That is, the peak of
infection is longer for the community network than for the
scale free network.

4. Conclusions

The scale free BA network is an appealing model for
physicists interested in the study of transport in complex
systems, and disease transmission is a useful prototypi-
cal application of this model. However, complexities in
the real world do not always mirror such neat abstractions.
In this work we have focussed on the comparison of this
model to (perhaps) more realistic alternatives.

Our results show that the persistence one observes in
SIS type dynamics in infinite BA networks is a reasonable
proxy for moderately large (but finite) BA simulations. In
the case of the community model proposed in this paper, we
find that the level of infection is somewhat — but not drasti-
cally lower. The most marked distinction is that the disease
propagates to and reaches it’s equilibrium more slowly. We
also observe a somewhat larger threshold λc.

These results are also mirror we we consider the case of
partial immunisation — a simple proxy for a more complex
model of vaccination [8]. Interestingly, in this case, the
time course for the disease of both networks is very simi-
lar. The main difference being that the BA model exhibits
a sharper and narrower peak, while the community model
(for comparable parameter values) has a broader and lower

maximum. We now need to extend this community model
to ensure that it does closely reflect reality. The model
structure — with separate communities of adults and chil-
dren also means that it may be a useful tool to study the
transmission of diseases which affect adults and children
differently. This may also help us to study disease which
typically break out in waves — first affecting mostly chil-
dren, and later adults.
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