
Nonlinear Average Consensus

Leonidas Georgopoulos† and Martin Hasler†

†School of Computer and Communication Sciences, Ecole Polytechnique Federale de Lausanne
Lausanne, Switzerland

Email: leonidas.georgopoulos@epfl.ch, martin.hasler@epfl.ch

Abstract—We present an algorithm for nonlinear
consensus in complex networks. Our motivation draws
from analysis on the algorithm based on a weighted
linear update protocol. Comparison of the asymptotic
with early convergence rate encourages an alternative
algorithm which exploits both stages.

1. Introduction

We consider a discrete time dynamical network com-
posed of a graph G(V, E) and a first order linear or
non-linear dynamical system associated with each ver-
tex vi on the vertex set V. The dynamics should be
assigned in such a manner that consensus is reached
asymptotically. This means that the states xi(t) , i =
{1, 2, 3 . . . n} converge to one and the same value. In
addition , we require that this value is the mean of
the initial state. i.e. xi(t) −→

t→∞
1
n

∑n
i=1 xi(0), ∀ i =

{1, 2, . . . n}
This problem has been studied in the literature

[4],[6],[7]. In addition we desire that convergence takes
place as fast as possible. For this purpose the in-
teraction coefficients between the vertices, i.e. the
weights on the edges can be optimized [1]. How-
ever, the optimization criteria commonly used is the
asymptotic exponential speed of convergence. r = lim

t→∞(
‖x(t)−x∗‖
‖x(0)−x∗‖

)1/t

. We claim that this might not be the
most pertinent criterion over all applications.

Our work is mainly targeted in wireless sensor net-
works. The graph is a geometrical graph where the
vertices correspond to the devices and the edges to the
wireless connections. The state at time zero represents
a physical quantity of which the elements are noisy
measurements from each sensor. Thus, the consensus
algorithm determines after convergence the maximum
likelihood estimate of this value , assuming the noise
is white. In many applications, the estimate does not
have to be extremely precise. Thus, the consensus
algorithm is stopped long before convergence. There-
fore, it may not be the best choice to maximize the
asymptotic convergence rate but to examine specifi-
cally the initial transient dynamics.

To demonstrate the difference we have represented

0 50 100 150 200 250 300
10

−2

10
−1

10
0

Metropolis

Optimized

Figure 1: Comparison of mean standard deviation
E[σ(x(t))]. Red line: Using weights of convex optimization.
Blue line: Weights using the Metropolis-Hastings rule.

the time evolution of the mean standard deviation

E[σ(x(t))] = E

(1
n

n∑
i=1

(xi(t)− µ)2
)1/2

from consensus as a function of time, using a linear
algorithm, cf. equation 1, where the expectation value
E is with respect to a random choice of the initial
states according to the normal distribution N (0, 1), in
figure 1.

The red line corresponds to the output of the algo-
rithm when the weights on the edges where obtained
after convex optimization with respect to the asymp-
totic speed of convergence. The blue line corresponds
to the same graph but this time the edge weights have
been assigned incorporating the Metropolis-Hastings
rule [6], where di is the degree of vertex i.

[W]ij =
{ 1

max{di,dj} i 6= j

1−
∑n
k=1[W]ik i = j

Clearly, asymptotically the optimized weights lead to
faster convergence rate. However, the MH-weights
have initially a faster decrease of the expected mean
standard deviation from consensus. For this graph,
up to precision 10−1 it is more advantageous to use

2009 International Symposium on Nonlinear Theory and its Applications
NOLTA'09, Sapporo, Japan, October 18-21, 2009

- 10 -

the MH-weights than the optimal weights. In fact the
MH-weights are also much easier to determine since
the knowledge required of the graph is much less. We
expect this effect to be more pronounced, the larger
the graph is.

2. Linear Consensus

The linear consensus algorithm as presented in [3]
consists of a simple vertex-local update equation.

xi(t+ 1) =
∑
j

wijxj(t) (1)

where xi ∈ R is the state variable defined on the ver-
tex and wij ∈ R+ are weights on the edges of the
graph. Specifically, wij 6= 0 when vertices vi and vj
are connected by an edge on the graph G(V, E) and
wij = 0 otherwise. A global update equation can be
readily retrieved in matrix form. Hence, equation (1)
becomes,

x(t+ 1) = Wx(t) (2)

where the state defined on the graph is denoted by
x ∈ Rn with n being the cardinality vertex set. The el-
ements of matrix W ∈ Rn×n correspond to the weights
on the edges of the graphs such as [W]ij = wij .

Suppose that matrix W satisfies the conditions be-
low

WT = W ,W1 = 1 , ρ(W − 11T /n) < 1 (3)

where 1 = (1, 1, 1, . . . , 1)T ∈ Rn and ρ(·) denotes the
spectral radius. Due to the presence of the eigenvector
1 the dynamical system has an infinity of fixed points
of the form x∗ = α1 where α ∈ R. The convergence
of the solutions of (2) to a fixed point is enforced due
to condition ρ(W − 11T /n) < 1 and that fixed point
under conditions in (3) is such that α = 1Tx(0)/n.
The reader is directed to [7] for further details on the
subject.

2.1. Asymptotic Phase

The dynamical system (2) will converge to the av-
erage of the initial state

xi(t) −→
t→∞

1
n

n∑
i=1

xi(0), ∀ i = {1, 2, . . . n} (4)

with exponential speed of convergence. The expo-
nent is time-dependent and is determined by the initial
state and the eigenvalues of W. The eigenvalues sat-
isfy.

1 = λ1 > λ2 ≥ λ3 . . . ≥ λn > −1

Therefore the exponential speed of convergence is at
least

| log min{1− λ2, 1 + λn}| (5)

The latter is as well the asymptotic exponential speed
of convergence as t→∞.

2.2. Transient Phase

Initially, the exponential speed of convergence is ex-
pected to be much higher than its asymptotic value.
This is due to the fact that the components cor-
responding to the eigenvalues 1 − λi, where i =
{3, 4, . . . , n}, diminish rapidly. Therefore, in early
stages of the process those eigenvalues contribute and
essentially determine the speed of convergence. Their
impact vanishes later on and finally, only the spectral
gap, equation (5), is important as t → ∞. This tran-
sient effect is rather evident in larger networks where
the number of the eigenvalues is large. Therefore, the
collapse of the components, in these networks, requires
more iterations to complete.

Assume that the initial state of each vertex is sam-
pled from a normal distribution xi ∼ N (α, σ2), ∀i =
{1, 2, . . . n}. Therefore the initial state on the graph is
sampled from a normal distribution x ∼ N (α1, σ2I).
The weight matrix is a diagonalizable matrix accord-
ing to W = SDS−1. Since it is a symmetric matrix,
its eigenvectors form an orthonormal basis STS = I.
Hence, the state x can be decomposed as y = STx.
Subsequently, the components follow a normal distri-
bution y ∼ N (STα1,STσ2IS), which leads to y ∼
N (enα/c, σ2I), where en = {0, 0, 0 . . . , 1} and c =
1/
√
n is a normalization constant on S. It holds that

‖x(t) − 1(x(0)T1)/n‖2 = ‖(W − 11T /n)tx(0)‖2. Let
define the quantity Φ(t) = 1

n−1‖(W− 11T /n)tx(0)‖2.
Since y(t+1) = Dy(t) then one can readily show that
the related variance that follows from the subsequent
application of map (2) onto some initial state x(0) is
given by,

Φ(t) =
1

n− 1
y(0)T D̃2ty(0) (6)

where y(0) = STx(0) and D̃ = diag{0, λ2, λ3, . . . , λn}.
Thereafter, the expectation may be obtained by
E[Φ(t)] = 1

n−1Tr[D̃
2t]E[y(0)Ty(0)] which leads to

E[Φ(t)] =
1

n− 1

n∑
i=2

λ2t
i σ

2 (7)

3. Nonlinear

Our intention is to have both a high exponential
speed in the transient phase and in the asymptotic
phase by using a nonlinear function. The trick is to
leave the system with appropriate linear weights at
the asymptotic phase while modulating them appro-
priately during the transient phase.

The proposed local update rule can be summarized
in the equation below.

xi(t) 7→ wiixi(t) +
∑
j

wijf (uij (t)) (8)- 11 -

Where uij = xj −xi and the nonlinear function in the
summation can be any C1 continuous function which
satisfies f (0) = 0 , f (−u) = f (u), df

du > 0 . This fam-
ily of functions for consensus has been mentioned in
[5] but is focused on the continuous time case. We
provide the following theorem which suffices for the
convergence of the non-linear dynamical system.

Theorem 1. Suppose that W ∈ Rn×n is a doubly
stochastic matrix. Let f be an odd, increasing scalar
function f : R→ R, with a bounded first order deriva-
tive 0 ≤ df

dx ≤ 1. Assume ρ(W − 11T /n) < 1,
then the evolution of the discrete dynamical system
x(t+ 1) = A(x(t))x(t) converges according to:

xi(t) −→
t→∞

1
n

n∑
i=1

xi(0), ∀ i = {1, 2, . . . n}

The proof follows.

Proof. Equation (8) can be written

xi(t+ 1) = wiixi(t) +
∑
j∈βi

wij
f (uij (t))
uij

uij(t)

as long as xj 6= xi.
Let define the matrix [A]ij = wij

f (uij)
uij

[A]ij , ∀i 6= j

and [A]ii = 1 −
∑n
j=1[A]ij , where A is the adjacency

matrix. When uij = 0 the matrix element is defined
as [A]ij = lim

uij→0

f (uij)
uij

.

The matrix A is a function of f (uij). Since uij is a
function of x then A is a function of x, as well. Sub-
sequently, we are lead to the following global update
equation.

x(t+ 1) = A(x(t))x(t) (9)

The matrices A and W can be written A(x) = I−
L(x) and W = I− L. Where L is the weighted graph
laplacian, [2], and L(x) the corresponding weighted
graph laplacian of the nonlinear system. The time in-
dex is omitted for simplicity where it is not necessary.

Let µk and λk are the eigenvalues of L(x) and L,
respectively. Therefore the eigenvalues of the two ma-
trices, A and A, are 1 − µk and 1 − λk, respectively.
Due to the fact that these matrices are symmetric
their eigenvalues are ordered as λ1 ≤ λ2 ≤, . . . , λn
and µ1 ≤ µ2 ≤, . . . µn .

The eigenvalues of λk and µk are increasing func-
tions of [W]ij , [A]ij respectively. This follows from

xTLx =
n∑
i=1

n∑
j=1

[W]ij(xj − xi)2

Hence xTLx is a positive increasing function of wij .
Since both L and L(x) are symmetric the Courant-
Fischer theorem holds. This extends to A and there-
fore we need only the conditions on W.

A function that satisfies the conditions of theorem
1 and modulates the weights appropriately is

f(u) = tanh(θ1u)θ2 (10)

where parameters {θ1, θ2} ∈ R+ are assigned such that

θ1θ2 ≤ 1 (11)

We are going to verify in the next section by simula-
tion that this function performs better when compared
with the linear algorithm.

4. Validation

Our experiments have been focused on geometric
graphs. These were mainly selected due to their re-
lation with the application at hand, wireless sensor
networks.

We have randomly generated 100 different con-
nected graphs with fixed vertex set size, |V| = 100, and
varying edge set size |E|. The weights on the edges of
each graph were assigned using convex optimization.
For each of these graphs we have generated 1000 differ-
ent initial states sampled from a normal distribution
N (0, 1) , resulting in a dataset of 100000 different tri-
als. For each of these initial state/graph combinations
the linear algorithm and the non-linear algorithm have
been simulated, equations (2) and (8) respectively, for
300 iterations. To accommodate the discussion here
on, we refer to each of these simulations as epoch.

Two error measures are used to validate our ap-
proach. The first, is the mean value over all epochs of
the standard deviation , σ(xη(t)), at iteration t, within
an epoch η. The upper index (·)η denotes the epoch.
Suppose that the state follows a normal distribution
over epochs then the variance follows a χ2-distribution.
Therefore, the expectation of the standard deviation
should be the mean over the sample set. The measure
can be summarized in the formula below,

E[σ(x(t))] =
1

K − 1

K∑
η=1

σ(xη(t)) (12)

where K is the total number of epochs. The latter
allows to validate the precision of the algorithms for
this specific graph-set. The time evolution of this error
measure is plotted in figure 2.

Let us define the temporal mean the error mea-
sure, equation (12), over an entire epoch, Q(η) =
1/T

∑T
t=1E[σ(xη(t))], where T is the total number

of iterations. Subsequently we may define the second
measure as its mean over a class of epochs C where
the number of edges on the graph is k. This provides
a measure on the performance of an algorithm for a
class of graphs in the graph-set.

Q̄(k) =
∑
η∈C

Q(η) (13)- 12 -

0 50 100 150 200 250 300
10

−2

10
−1

10
0

Expected standard deviation

iteration − t

E
[σ

(x
(t

)]

Linear

Non−linear

Figure 2: Comparison of expected standard devia-
tion E[σ(x(t))], equation (12). The nonlinear algorithm
performs better during the transient phases, not later than
iteration 50, and then assimilates the asymptotic speed.
This allows for an overall increase in precision in compar-
ison to the linear. Blue line: Linear Algorithm, equation (2).
Red line: Non-linear Algorithm, equation (8).

This is plotted in figure 3 against the number of edges
on the graph.

Our claim in section 3 that the non-linear algorithm
benefits from both phases is verified in figure 2. More-
over, an examination of figure 3 leads to the conclusion
that the improvement is uniform with respect to the
number of edges on the graph. This encourages our
postulation that the nonlinear algorithm has an overall
better performance against the linear. This conclusion
holds at least within the domain of graphs simulated
in this section.

5. Conclusion

Our principal purpose has been twofolds herein.
First, to establish the importance of the transient
phase for the linear algorithm. Second, to demonstrate
that an alternative approach with a non-linear func-
tion can benefit from the transient phase. The pre-
sented non-linear algorithm gains from both the tran-
sient and the asymptotic phase. This results in overall
better convergence rate, at least for the class of graphs
we have validated against.

Acknowledgments

This work has been funded by the WINSOC Project,
a Specific Targeted Research Project (contract number
0033914) funded by the INFSO DG of the European
Commission within the RTD activities of the Thematic
Priority Information Society Technologies. 9

200 220 240 260 280 300 320 340
10

−2

10
−1

10
0

Mean Expected Standard Deviation over graph edges

graph edges − k
M

e
a
n
 E

x
p
e
c
te

d
 E

rr
o
r

Linear

Non−linear

Figure 3: Expected overall temporal precision
E[Q(k)]. The performance measure in equation (13) is
plotted against the number of edges on the graph. The non-
linear algorithm demonstrates better performance across
the entire range. The non-linear algorithm benefits from
the transient phase in comparison to the linear. Blue
line: Linear Algorithm, equation (2). Red line: Non-linear Al-
gorithm, equation (8).

References

[1] Stephen Boyd and Lieven Vandenberghe. Convex
Optimization. Cambridge University Press, New
York, NY, USA, 2004.

[2] Chris Godsil and Gordon Royle. Algebraic Graph
Theory, volume 207 of Graduate Texts in Mathe-
matics. Springer, April 2001.

[3] Nancy A. Lynch. Distributed Algorithms (The
Morgan Kaufmann Series in Data Management
Systems). Morgan Kaufmann, 1st edition.

[4] R. Olfati-Saber and R.M. Murray. Consensus prob-
lems in networks of agents with switching topology
and time-delays. Automatic Control, IEEE Trans-
actions on, 49(9):1520–1533, Sept. 2004.

[5] R. O. Saber and R. M. Murray. Consensus proto-
cols for networks of dynamic agents. In American
Control Conference, 2003. Proceedings of the 2003,
volume 2, pages 951–956, 2003.

[6] Lin Xiao and S. Boyd. Fast linear iterations for dis-
tributed averaging. Decision and Control, 2003.
Proceedings. 42nd IEEE Conference on, 5:4997–
5002 Vol.5, Dec. 2003.

[7] Lin Xiao, Stephen Boyd, and Seung-Jean Kim.
Distributed average consensus with least-mean-
square deviation. J. Parallel Distrib. Comput.,
67(1):33–46, 2007.

- 13 -

	Navigation page
	Session at a glance
	Technical program

