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Abstract– Short-term prediction of the pressure 
fluctuations in a lean premixed gas-turbine combustor has 
been performed in this work from a view point of 
nonlinear dynamics.  The short-term predicted pressure 
fluctuations obtained by updating the data library of the 
phase space coincide very closely with the measured 
pressure fluctuations.  The obtained results show that the 
nonlinear time series analysis we applied in this work has 
potential use for predicting the short-term dynamic 
behavior of the pressure fluctuations with high accuracy, 
which has not been previously reported in the fields of 
combustion science and physics. 
 
1. Introduction 

Lean premixed combustion is highly advantageous in 
reducing nitrogen oxide (NOx) emission from gas-turbine 
engines without the loss of combustion efficiency by 
controlling the equivalence ratio to within an appropriate 
range.  This combustion method has attracted considerable 
attention from developers of gas-turbine combustors. One 
main drawback of lean premixed combustors, however, is 
that they are susceptible to flow perturbations. They suffer 
from combustion instabilities such as thermo-acoustic 
combustion oscillations, lean blowout and flashback. 
Among these, thermo-acoustic combustion instability, 
caused by the strong coupling between the variations in 
pressure and heat-release rate, is considered to be a 
serious problem since it can lead to a reduction in lifespan 
or even the total destruction of an engine. The physical 
mechanism underlying the onset of thermo-acoustic 
combustion instability and efficient suppression methods 
for the combustion instability have been extensively 
investigated for various types of laboratory-scale gas 
turbine combustor with swirling flow, which is 
summarized in detail in a recent review paper edited by 
Huang and Yang [1].   

Regarding the treatment of unstable behaviors in the 
combustion process induced by the thermo-acoustic 
instability, the power spectral analysis of the pressure and 
heat-release fluctuations has been performed in most 
studies [2-5]. This method of linear analysis is capable of 

detecting the excitation of unstable combustion modes, 
but may be insufficient for fully understanding the 
underlying physics of combustion instabilities because 
they are complex phenomena strongly affected by the 
inherent nonlinearity associated with chemical reactions, 
turbulent flow and acoustic perturbations. Therefore, a 
new approach based on nonlinear dynamics will become 
significant for the treatment of the combustion instabilities 
in gas-turbine combustors.  

A nonlinear time series approach inspired by chaos 
theory is becoming an increasingly reliable tool for 
clarifying the nonlinear properties of complex dynamics, 
and its importance has been discussed in previous 
combustion researches [6], [7]. In a recent work, we have 
successfully extracted the deterministic nature in the 
combustion instability in a lean premixed gas-turbine 
combustor by using a nonlinear time series analysis [8].  
The purpose of this study is to investigate the possibility 
on whether or not the nonlinear time series analysis is 
applicable to predict the short-term dynamic behavior of 
the pressure fluctuations in a lean premixed gas-turbine 
combustor.  In this work, we especially investigate the 
influence of neighboring points in the phase space on the 
accuracy of the predicted pressure fluctuations. 
 
2. Experiments 

The configuration of the experimental system is shown 
in Fig. 1.  This system is identical to that used in the 
previous study [9]. The combustion test rig is composed 
of a blower, an electric heater, a mixing tube, an axial 
swirler and a combustion chamber. The chamber has a 
length of 630 mm with a 100  100 mm square cross 
section. The rest of the chamber is composed of a water-
cooled stainless-steel duct. Methane gas is used for the 
main fuel and is injected through multiple orifices at a 
location 260 mm upstream from the inlet of the 
combustion chamber. An axial swirler is installed as a 
flame holder at the inlet of the combustion chamber. The 
active control by a secondary fuel injection [9] is out of 
the scope of this work because this work focuses on the 
investigation of the dynamic behavior of the combustion 
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instability. The inlet air temperature and air mass flow rate 
are 700 K and 78 g/s. The equivalence ratio  = 0.45 is 
selected in the current experiment because it is under the 
condition that the intermittent combustion instability 
occurs (see Fig. 2).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
To investigate the dynamic behavior of the combustion 

instability, the pressure fluctuations are measured by 
pressure transducers (Kulite Semiconductor Products, 
Model XTEL-190-15G). A pressure port, PT1, is placed 
on the wall of the mixing chamber. The other ports, PT2-
PT4, are located on the wall of combustion chamber. 
Signals from the pressure transducers are acquired 
simultaneously through a multi channel data acquisition 
system (Ono Sokki, DS-2000). The sampling frequency of 
the obtained time series is 25.6 kHz. In this work, the 
nonlinear time series analysis is applied to the time series 
data of the pressure fluctuations p’ obtained from 
transducer PT2 because the influence of thermo-acoustic 
coupling strongly appears in the time series data of the 
measured location. Note that the nonlinear time series 
analysis is implemented for the time series data of the 
pressure fluctuations p’ at the sampling frequency 5.12 
kHz. 
 
 
3. Nonlinear time series analysis 

The sensitivity of the time evolution of a system to 
small changes in initial conditions is a critical 
characteristic of chaos, which causes the exponential 
decay of predictability with time. This effect is known as 
short-term predictability followed by long-term 

unpredictability. In this work, we use this concept to 
predict the time variation in the pressure fluctuations. On 
the basis of Takens’ embedding theorem [6-8], the phase 
space is constructed from the time series data of the 
pressure fluctuations p’. The time-delayed coordinates 
used for the construction of the phase space are expressed 
as 
 

            1,,2,, ''''  Dtptptptpti X     1  

 
where i = 0, 1,  , n (n is the data number of the time 
series), X(ti) is the phase space vectors, p’(t) is the 
pressure fluctuations at time ti, D is the embedding 
dimension, that is, the dimension of the phase space, and   

is a time lag. As used in the previous paper [6-8],  is set 
to be the time lag that yields a local minimum of mutual 
information. 

We first divide the time series data into first and second 
parts. The first part is used as a source for generating data 
library, and the second part is used as reference data for 
comparison with the predicted time series data. A set of 
neighbors of the vector X(tp), which are described by X(tk) 
(k = 1, 2,…, K), are first searched for from all the points in 
the phase space, where X(tp) is the final point of trajectory 
of the phase space constructed from the data library. After 
T steps, X(tk) is mapped to the T step ahead prediction 
X(tk + T).  X(tp + T) is expressed as follows: 
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where dk = || X(tp) - X(tk) ||. The predicted time variation 
of the pressure fluctuations is obtained inversely from X(tp 
+ T). 
 
4. Results and Discussion 

The time variation of the predicted pressure fluctuations 
at different neighboring points K, together with the 
measured pressure fluctuations, is shown in Fig. 3.  Note 
that the pressure fluctuations measured over 21 s are used 
as the data library to predict the time variation of the 
pressure fluctuations.  When K is 10, the predicted 
pressure fluctuations follow the measured pressure 
fluctuations for approximately the first 12 cycles.  
However, they gradually diverge from the measured 
pressure fluctuations, showing an inconsistency in the 
amplitude at t  21.06 s.  This trend nearly does not 
change with increasing K.  As reported in a previous work 
[8], two cycles with the dominant periodic oscillations are 
clearly formed at  = 0.46.  On the basis of the previous 
work [8], it turns out that the parallelism of neighboring 
trajectories in the phase space is high in a wide range of 
neighboring points. Therefore, the time variation of the 
predicted pressure fluctuations nearly does not change 
with increasing K.  Similarly to in a previous work [8], we 

Fig. 1 Schematic of experimental system. 
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Fig. 2 Time variation of pressure fluctuations p’ 
at equivalence ratio  = 0.45. 
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predict the time variation of the pressure fluctuations by 
updating the data library of the phase space before losing 
the determinism of trajectories in the phase space, which 
is needed to predict the pressure fluctuations with high 
accuracy.  The schematic of the method of prediction by 
updating the data library is shown in Fig. 4.  As a first step, 
the prediction of the pressure fluctuations for 10 cycles is 
implemented.  The prediction of the second step is made 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

using the data library, to which the measured pressure 
fluctuations of the first step have been added.  This 
process is iterated for n steps, keeping the amount of the 
data in the data library constant.  In this work, the value of 
K is set to 10.  The time variation of the predicted pressure 
fluctuations obtained by updating the data library, together 
with the measured pressure fluctuations, is shown in Fig. 
5.  The predicted pressure fluctuations correspond to the 
measured pressure fluctuations.  To quantitatively evaluate 
the degree of coincidence between the predicted and 
measured pressure fluctuations, the amplitude ratio Ap /Am 
(where Ap is the standard deviation of the predicted 
pressure fluctuations and Am is the standard deviation of 
the measured pressure fluctuations in each 20 cycles 
starting from N = 0) and the phase lag  between the 
predicted and measured pressure fluctuations in each 20  
cycles starting from N = 0 are shown in Fig. 6 as a 
function of the number of cycles of pressure fluctuations, 
N.  Ap /Am and  is nearly 1.1 and 0, respectively.  This 
result clearly shows that the degree of coincidence 
between the predicted and measured pressure fluctuations 
is sufficiently high, and that by updating the data library 
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Fig. 4 Schematic of the prediction method updating 
the data library of the phase space 
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Fig. 3 Time variation of predicted p’at  = 0.45 
under the different conditions of K. 
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Fig. 5 Time variation of predicted p’at  = 0.45 
and K = 10 obtained by updating the data library. 
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Fig. 6 Variations of  and Ap /Am at  = 0.45 
and K = 10 as a function of N. 
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of the phase space, the nonlinear time series analysis we 
applied in this work is valid for predicting the intermittent 
nature of the pressure fluctuations with high accuracy.  In 
addition to the applicability of the nonlinear time series 
analysis for identifying deterministic chaos [8], the results 
obtained in this work demonstrate that the nonlinear time 
series analysis has sufficient potential use for predicting 
the pressure fluctuations of the combustion instability in a 
lean premixed gas-turbine combustor, and that it may be 
worthwhile from a practical viewpoint. 
 
5. Summary 

The nonlinear time series analysis based on the concept 
of orbital instability in phase space has been performed to 
predict the time variation of the pressure fluctuations for  
= 0.45, for which neighboring trajectories in the phase 
space exhibit a deterministic nature [8].  In this work, the 
number of neighboring points of the trajectories in phase 
space K is changed from 10 to 500.  The time variation of 
the predicted pressure fluctuations obtained by updating 
the data library coincides closely with those of the 
measured pressure fluctuations.  This result shows that the 
nonlinear time series analysis we applied in this work has 
sufficient potential use for predicting the short-term 
dynamic behavior of the pressure fluctuations with high 
accuracy, which has not been previously reported in the 
fields of combustion science and physics. 
 
Acknowledgement 

One of the authors (H.G.) was partially supported by a 
“ Grant-in-Aid for Young Scientists (A) from the Ministry 
of Education, Culture, Sports, Science and Technology of 
Japan (MEXT) ”. 
 
References 
[1] Y. Huang, V. Yang, “ Dynamics and stability of lean-
premixed swirl-stabilized combustion ”, Progress in 
Energy and Combustion Science 35, pp. 293-364, 2009.  
[2] S. Candel, “ Combustion Dynamics and Control: 
Progress and Challenges ”, Proceedings of the 
Combustion Institute 29, pp. 1-28, 2002. 
[3] T. Poinsot, A. Trouve, D. Veynante, S. Candel, E. 
Esposito E, “ Vortex driven acoustically coupled 
combustion instabilities ”, Journal of Fluid Mechanics 
177, pp. 265-292, 1987. 
[4] K. C. Schadow, E. J. Gutmark, “ Combustion 
instability related to vortex shedding in dump combustors 
and their passive control ”, Progress in Energy and 
Combustion Science 18, pp. 117-132, 1992. 
[5] W. P. Shih, J. G. Lee, D. A. Santavicca, “ Stability and 
emissions characteristics of a lean premixed gas turbine 
combustor  ”, Proceedings of the Combustion Institute 26, 
pp. 2771-2778, 1996. 
[6] H. Gotoda, T. Miyano, I. G. Shepherd, “ Experimental 
investigation on dynamic motion of lean swirling 
premixed flame generated by change in gravitational 
orientation ”, Physical Review E 81, 026211(10pages), 
2010. 

[7] H. Gotoda, K. Michigami, K. Ikeda, T. Miyano, 
“ Chaotic oscillation in diffusion flame induced by 
radiative heat loss ”, Combustion Theory and Modeling 14, 
479-493, 2010. 
[8] H. Gotoda, H. Nikimoto, T. Miyano, S. Tachibana, 
“ Dynamic properties of combustion instability in a lean 
premixed gas-turbine combustor ”, Chaos 21, 013124 
(11pages), 2011. 
[9] S. Tachibana, Y. Kurosawa, K. Suzuki K, “ Active 
control of combustion oscillations in a lean premixed 
combustor by secondary fuel injection coupling with 
chemiluminescence imaging technique ”, Proceedings of 
the Combustion Institute 31, pp. 3225-3233, 2007.  
 

- 12 -


	Navigation page
	Session at a Glance
	Technical Program

