
Synchronization regulation of a complex network
by link rewiring or node pinning

I. Sendiña-Nadal†, J.A. Almendral†, I. Leyva†, J.M. Buldú†, D. Yu‡, and S. Boccaletti§
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Abstract—Synchronization is essential for the correct
functioning of many technological systems as in wireless
communications, parallel/distributed computing, or elec-
trical power distribution lines. One of the properties that
those systems should have is scalability, i.e., the ability to
be augmented without loosing the synchronization perfor-
mance. In this communication, we describe a method to
properly engineer the wiring of a network of dynamical
units in order to achieve synchronization. We provide rules
to guide the rewiring of the links of a given node in the net-
work or to guide the pinning with a new only node added to
the network. In particular, we will focus on sequential reg-
ulation processes in order to establish conditions for iden-
tifying the minimal number of connections needed for reg-
ulating synchrony, as well as a practical way to find the
corresponding sequence of connections.

1. Introduction

Regulation of synchronization of networking dynamical
units is an issue of the outmost importance because syn-
chronous behavior is a must for the correct functioning of
many technological and biological networks [1]. As con-
cerning the former class of networks, synchronous message
passing in computer science, is a form of communication
used in parallel/distributed computing [2] or in wireless
sensor networks [3], while in the later class, a quorum-
sensing mechanism is used in many populations of cells
to cause expression of genes in gene regulatory networks
[4, 5].

A common feature of these systems is that they are con-
tinuously growing. Thus, it is essential to understand how
this growth it is accompanied without loosing the synchro-
nization performance, in order to optimally design techno-
logical networks or synthetic biological gene networks.

Here we propose pinning regulation as a model to un-
derstand the regulatory mechanisms underlying this syn-
chronous behavior of a network of dynamical units [6]. We
provide a full description on how to engineer an external
pinning action on a network of identical dynamical units
leaving unchanged its dynamical properties and topology

and minimally acting to achieve regulation of synchrony.
The pinning interaction comes from an external node which
is identical to the nodes of the network and whose only ef-
fect is establishing bidirectional connections of the same
strength in sequential steps. Our aim is to provide the con-
ditions to achieve this with the minimal number of connec-
tions.

2. Pinning regulation

In order to evaluate the pinning regulation of a given net-
work, we consider an initial graph G0 of N bidirectional
coupled identical systems each one represented by a m-
dimensional real vector state xi (i = 1, . . . ,N), whose evo-
lution is given by the equation:

ẋi = f (xi) + σ
∑N

j=1Li jh(x j),

and depends on the local function f , on the coupling func-
tion h, on the Laplacian matrix L ∈ MN associated to the
connectivity described by the graph G0, and on the fixed
coupling strength σ. The assumption of a network made
of identical systems and a zero-row sum Laplacian ensures
the existence of a synchronous state [x1(t) = x2(t) = ... =

xN(t) = xs(t)] whose stability can be studied by means of
the Master Stability Function (MSF) approach [7]. The
MSF approach demonstrates that there are only two classes
of systems for a given local and coupling functions that al-
low stability of the synchronous state [8].

Figure 1 shows the shapes of the maximum Lyapunov
exponent Λ for the so called class II, Fig. 1 (central col-
umn), and class III systems, Fig. 1 (right column), as a
function of a parameter λ which essentially depends on f
and h [8]. For class II systems, the synchronous state xs

is stable above a critical λ1
c =

µ1
σ

as Λ is a monotonically
decreasing function, while stability for class III with a V-
shape Λ function is reached within an interval of values
λ1

c =
µ1
σ

and λ2
c =

µ2
σ

In our case, as the coupling strength
σ is fixed, the variable moving along the x-axis is directly
related to the eigenvalues of the Laplacian matrix.

We start from a situation in which the network topology
gives rise to an unstable synchronous state (as depicted at
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Figure 1: Possible classes of master stability function for
networked chaotic systems. In all cases (Λ(λ = 0) > 0)
is the maximum Lyapunov exponent of the single uncou-
pled system. The case II (middle column) corresponds to
a monotonically decreasing master stability function. Case
III (right column) admits a finite range of negative values
for Λ(λ). The network (left column) capability to give rise
to a stable synchronized dynamics depends on the distribu-
tion of its eigenvalues spectrum along the λ axis: λ2 >

µ1
σ

for class II and both λ2 and λN+1 within the interval ( µ1
σ

, µ2
σ

).

the top row of Fig. 1), that is, if we order the eigenvalues
(which is possible because the Laplacian matrix is zero-row
sum and symmetric), 0 = λ0

1 < λ0
2 < . . . < λ0

N , the smallest
non zero eigenvalue, λ0

2, is outside the stability region for
both classes of systems. For the class III system besides,
the largest eigenvalue, λ0

N , has to be initially located inside
the stability region in order to be able to regulate the net-
work to synchrony. Otherwise, if λ0

N > µ2
σ

, the synchronous
state is impossible to turn stable by pinning.

In order to regulate the stability of xs(t), we consider here
an interaction between G0 and an external dynamical sys-
tem, identical to those inG0, that forms, at successive times
tn (n = 1, ...,N) a series of σ-strength connections by pin-
ning the nodes in G0 with a given sequence {s1, s2, . . . , sN}.
This is schematically shown in Fig. 1 at the left column
for t1 (middle row) and t2 (bottom row), where the original
graph is being pinned by an external node (red links).

This situation is now described by this new equation of
motion,

ẋi = f (xi) + σ

N+1∑
j=1

L′i j(t)h(x j), (1)

where L′(t) =
(
L′i j(t)

)
∈ MN+1 is now the following time

dependent Laplacian matrix



L′11(t) L′12 · · · L′1N Θ(t − T1)
L′21 L′22(t) · · · L′2N Θ(t − T2)
...

...
. . .

...
...

L′N1 L′N2 · · · L′NN(t) Θ(t − TN)
Θ(t − T1) · · · · · · Θ(t − TN) L′N+1 ,N+1(t)


whose elements are such that:

i) L′i j = Li j for i , j and i, j < N + 1;

ii) Θ(t − Ti) = L′i,N+1(t) = L′N+1,i(t), being Ti the time
at which the ith node in G0 is pinned by the interaction
with the external node, and Θ the Heaviside function.
Notice that while the index i in ti refers to a time or-
dering, the index i in Ti points to the ordering of the
pinning sequence, and therefore ti = Tsi .

iii) L′ii(t) = −
∑

j,iL
′
i j.

The effect of pinning the nodes in G0 with the external
one is to produce a new set of eigenvalues for the Laplacian
matrix L′, 0 = λn

1 < λn
2 < . . . < λn

N < λn
N+1. It is clear

that the only way to regulate the situation depicted at the
top row of Fig. 1 by pinning an external dynamical system
is moving λ2 inside the stability region for both class II
and class III systems and by keeping the largest eigenvalue
(now λN+1) inside for class III.

While for class II systems, a practical way to regulate
the synchronous state is by finding the optimal pinning se-
quence maximizing λ2, for the class III the synchroniza-
tion stability is ensured for all coupling architectures whose
corresponding eigenvalue spectrum is entirely contained
within the stability region of the MSF, delimited by the two
threshold parameters µ1

σ
and µ2

σ
. Then, the way we select

the pinning sequence is that to maximize (at each time tn a
new link is formed with the regulating node) the distance
λn

2−λ
0
2, in order to ensure that we are moving to the right in

the spectrum and, at the same time, to minimize λn
N+1 −λ

0
N ,

in order to keep the largest eigenvalue far from the second
threshold. This is equivalent to maximize the quantity,

Rn =
λn

2 − λ
0
2

λn
N+1 − λ

0
N

. (2)

Note that, the largest eigenvalue λN+1 always increases by
the fact we are adding connections, while is not always true
for λ2.

3. Results

From here on, we will accompany our analytical study
using the MSF with numerical examples, corresponding
to the case of N = 400 nodes arranged in two different
network configurations: a small-world network (SW) ob-
tained as in Ref. [9] by initially arranging the N nodes
in a ring with connections only between nearest neigh-
bors, and by randomly adding with probability p = 0.02
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Figure 2: Log-linear graph showing the behavior of λn
2 dur-

ing the regulation of a class II system for (a) SW, and (b) SF
networks (see text for details). As reference, the values of
λ0

2 and the ratio µ1/σ with (a) σ = 0.07 and (b) σ = 0.035
are given.

a connection between unconnected pairs of nodes (i.e. ob-
taining an average degree 〈k〉 = 2 + pN = 10), and a
scale-free network (SF) obtained by the preferential attach-
ment process of Ref. [10] with the same average degree
of 〈k〉 = 10. Furthermore, in all cases, we will consider
f (x ≡ (x, y, z)) = [−y − z, x + 0.165y, 0.2 + z(x − 10)] in
Eq. (1) (i.e. we will refer to the case of networks of coupled
Rössler systems [11]), because it is known that such a case
allows for a direct comparison of class III networks (when
h(x ≡ (x, y, z)) = [x, 0, 0] with µ1 = 0.206 and µ2 = 5.519)
and class II networks (when h(x ≡ (x, y, z)) = [0, y, 0] with
µ1 = 0.178).

Let us proceed first with the regulation of the class II
system. The behavior of λ2 by pinning both the SW and
the SF networks according to the criterion of maximizing
λ2 is reported in Fig. 2. This figure allows us to identify a
minimum number of links between the regulating node and
the rest of nodes. In particular, it is sufficient to pin less
than 2% of nodes to make the synchronous state stable. At
the same time, we observe that, comparing the two com-
plete different networks regarding their degree distribution
but with the same average degree, it is evident that the SW
is easier to regulate than the SF.

Figure 3 shows the behavior of the smallest (blue open
circles) and largest (red open squares) eigenvalues by max-
imizing the quantity defined by Eq. (2) as a new link is
formed between the regulating node and G0 during the pin-
ning regulation. Note that, before the pinning starts, the
initial smallest eigenvalues (blue full face circles) are be-
low the threshold, so the synchronous state is unstable, and
the largest ones (red full face squares), are inside the sta-
bility region in order to be able to regulate the system. The
main difference with respect to the class II system is that
the regulation is only possible up to a maximum length
sequence determined by the monotonous increase of the
largest eigenvalue. Another difference between regulating
networks with different heterogeneities in the degree distri-
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Figure 3: (Color on-line)(a-b) Log-log behavior of λn
2 (blue

open circles) and λn
N+1 (red open squares) during regulation

of a class III system for (a) SW and (b) SF networks (same
parameters and stipulations as in Fig. 2). The values of λ0

2
(blue full face circle) and λ0

N (red full face square) refer
to those of G0, and the horizontal dashed lines are in cor-
respondence with the limiting thresholds µ1/σ and µ2/σ
with (a) σ = 0.07 and (b) σ = 0.035. (c-d) Log-linear plots
of the averaged synchronization errors 〈e〉 vs. n during the
regulation of the same (c) SW and (d) SF networks used
in (a) and (b) respectively, and the same pinning sequence
optimizing Rn given in (a) and (b) respectively. Vertical
dashed lines are added to show the agreement with the pre-
dicted ranges of regulability depicted in (a-b).

bution is that the SF allows for a larger number of regulat-
ing sequences.

In order to verify the analytical results we performed
numerical simulations with a network of coupled chaotic
Rössler dynamical units and monitored the time average
synchronization error 〈e〉 with respect to the trajectory of
the regulating node. Figure 3(c-d) shows for the SW and
SF networks how accurately the numerical results repro-
duces the vanishing of 〈e〉 within the range predicted by
the theory in Fig. 3(a-b).

To conclude, let us introduce a short discussion regard-
ing our approach of regulation of synchrony. In previous
approaches of pinning control of networks [13] (i.e. the sit-
uation in which the external node is unidirectionally forc-
ing the dynamics of the original graph), it was argued that
the controllability of a generic network behavior towards an
assigned synchronous evolution could be enhanced by pin-
ning configurations that imply a decrease of the ratio λN+1

λ2
associated to the extended network topology [14]. This is
so because the MSF states that the more packed are the

- 9 -



1 10 100
n

λ N
+

1
n

/λ
2n

λ
N
0 /λ

2
0

Figure 4: Log-linear behavior of the ratio λn
N+1
λn

2
, where λn

2
and λn

N+1 are those obtained from the regulation process of
the SW network of the class III system reported in Fig. 3(a).
The sequences within the red rectangle correspond to all
those sequences that stabilize the synchronous state, while
those within the shaded region correspond to those that, de-
spite corresponding to values of the eigenratio larger than
the initial one (horizontal dashed line) and therefore mak-
ing less compact the spectra, still correspond to sequences
stabilizing the synchronous state.

eigenvalues, that is, the smaller the eigenratio λN+1/λ2, the
higher the synchronizability of the network. But, if we plot
this eigenratio during our pinning regulation process, we
observe in Fig. 4 that many pinning sequences exist that
are able to regulate the synchronous behavior of G0 (those
within the range of the red rectangle) and that, however,
correspond to values of λN+1

λ2
that are larger than the initial

(unpinned) value, for which the synchronous behavior was
unstable (shaded region).

We point out that our conclusions are not limited to pro-
cesses where regulation is attained by interaction with an
external node, but they can also be applied in all cases in
which the problem is to regulate synchrony by rewiring the
connections of given nodes of a graph. One can, indeed,
imagine to start with N networking systems, remove all k̃
connections of a given node, and substitute them with new
k̃ connections to the other N − 1 units of the graph, fol-
lowing the ranking sequence that our criteria are providing,
thus enhancing the synchronization behavior of the origi-
nal graph while maintaining the same number of nodes and
links.
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