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Abstract– In this study, a control strategy is applied to a 
Digital Micromirror Device (DMD) to maneuver its 
angular motion. The micromirror is actuated using an 
electrostatic field. The equations of motion of the system 
are derived using the Extended Hamilton’s Principle. The 
static response of the DMD for different DC loads (bias 
and address voltages) is analyzed. The linear vibration 
behavior of the DMD is examined by plotting the natural 
frequencies versus the considered DC voltages. The 
proposed control strategy is done by the Bang-Bang 
technique which is suitable in optimal control problems 
where the control switches from one extreme to the other 
at certain time instants. This control strategy allowed 
decreasing the residual vibration of the micromirror when 
it switches from a position to another and then reduced its 
resultant switching time.  

1. Introduction 
In the few recent years, there has been major focus on 
controlling microelectromechanical systems (MEMS) 
especially those used in the light processing devices. In 
fact, now there is a new MEMS-based projection display 
technology called Digital Light Processing (DLP) that 
accepts digital video and transmits to the eye a burst of 
digital light pulses that the eye interprets as a color analog 
image [1,2]. DLP is based on a MEMS device known as 
the Digital Micromirror Device (DMD).  Previous studies 
introduced several methods for the modeling of 
micromirrors [3-7]. For example, Chaabane et al [7] 
developed a continuous model that couples the bending 
and angular motions. The resulting ROM consists of two 
coupled ordinary-differential equations that represent the 
first modes of vibration associated with bending and 
torsion. The current study is a continuation of the work by 
Chaabane et al [7] and focuses on the control of the 
Micromirror to maneuver its angular motion by using the 
Bang-Bang control technique. This remaining of the paper 
is organized as follows: In the first part, the modelling and 
dynamics of the DMD developed by Chaabane et al [7] 
are reviewed using Lagrange’s equations. In the second 
part, we will examine the static and dynamic behavior of 
the micromirror. In the third part, the Bang-Bang 
technique is proposed to control the angular motion of the 
DMD.  

2. Problem formulation and system modeling 
The DMD system under consideration is composed of two 
flexible hinges, a rigid yoke, a rigid post, a rigid mirror, 
four landing spring tips, and four addressing electrodes, 
Fig. 1. The hinges are modeled by two microbeams, each 
of length l, width w, and thickness h. These beams are 
fixed from one side and connected to a rigid H-shaped 
plate of length Ly, thickness hy, and width w2, representing 
the yoke, on the other side. On top of the yoke sets a rigid 
square perforated bar of length Lp, internal and external 
lengths respectively, c1 and c2 which model the post. 
Above this bar sets a rigid squared plate (the micromirror) 
of length Lm and thickness hm. The spring tips are modeled 
by four linear translational springs of undeformed length 
l0 and equivalent stiffness k determined from the 
assumption that the spring tips deflect in their first mode 
of vibration. In addition, it is assumed that the sliding 
friction of the spring tips against the substrate is negligible. 
Beneath the micromirror set two rectangular electrodes 
each of length em and width b2-b1, where b1 denotes the 
distance between the x-axis and the inner micromirror 
electrodes’ edge and b2 represents the distance between 
the x-axis and the outer micromirror electrodes’ edge. Two 
reinforcing rectangular electrodes set under the yoke; each 
of length ey and width a2-a1, where a1 is the distance 
between the x-axis and the inner yoke electrodes’ edge 
and a2 is the distance between the x-axis and the outer 
yoke electrodes’ edge. The yoke addressing electrodes are 
at the lower height level (substrate), whereas the 
micromirror addressing electrodes are at the same height 
level as the yoke. Then, the air gap between the 
micromirror and its electrodes is Lp and the air gap 
between the yoke and its electrodes is denoted by H.  
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Fig. 1: Schematic of the micromirror device: (a) side view, (b) top view.  
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A reduced-order model can be deduced by approximating 
the hinges by linear translational and torsional springs 
associated with bending and torsion, respectively. The 
numerical values of the model parameters are listed in 
Table 1. 

Table 1: The micromirror geometrical and material parameters. 

ρ  2.7 g/cm3 mL  16 µm w 0.78 
µm 2b  9 µm 

E  69 GPa mh  0.5 µm 1w  3.6 ìm 
µm sl  

2.58 
µm 

ν  0.33 H  1.3 µm 2w  9.2 µm sw  0.65 
µm 

G  
25.94 
GPa ye  9.2 µm yL  9.4 µm sh  0.1 

µm 

0ε  9

1
36 10π

 
me  5 µm yl  5.2 µm 1c  3.7 

µm 

g  9.81 m/s2 1a  1.9 µm yh  0.5 µm 2c
 

3.2 
µm 

h 0.1 µm 2a  4.5 µm pL  2.5 µm Q 10 

l 3.9 µm 1b  6 µm 

 
The micromirror can be driven to rotate in one direction 
by supplying a voltage V to the corresponding side 
electrodes. This results in an electrostatic potential 
between the electrodes and the upper structure (yoke – 
micromirror). The resulting electrostatic potential 
generates two electrostatic pressures Pm and Py on the 
surfaces of the yoke and the micromirror respectively, 
which in return produce an electrostatic force Fm+Fy, and 
hence an electrostatic moment Mm+My around the 
suspension point. Subscripts m and y refer to the 
micromirror and the yoke, respectively. In response to 
these electrostatic forces, the rigid yoke–post–micromirror 
struture tends to rotate at an angle yθ  and bend down a 
distance uy simultaneously. Among the three possible 
configurations proposed in [7], two are adopted: 
• Configuration 1: no contact between the springs and 

the landing area; 

• Configuration 2: contact of two springs with one side 

of the landing area (one side contact). 

The motion can be described by one of two sets of 
equations associated with the above configurations. The 
DMD motion can switch between the above 
configurations. The equations of motion are derived from 
the kinetic and potential energies of the DMD using 
Lagrange’s equations applied to discrete systems: 

0,
i i

L L
t q q
⎛ ⎞∂ ∂ ∂

− =⎜ ⎟∂ ∂ ∂⎝ ⎠
                       (18) 

where -total totalL K V= , totalK and totalV represents the kinetic 

and the potential energy respectively and iq  represents the  
displacement associated with every degree of freedom 
(torsion and bending). 

1 2,y yq q uθ= =                                          (20) 

 First configuration 
 

We obtain the following set of equations:  
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  (21) 
For convenience, we use the following nondimentional 
variables  

θθθ cry = ,    uHu y =  ,     .T tτ= ,        (24) 

where crθ is the critical angular deflection and τ is the 
time constant defined as follows: 

2
hinge

2

2 ,     cr
p

J lH
w GJ

θ τ= =                    (25) 

So the system in   (21) becomes: 
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                (26) 
 Second configuration 

 
After applying the Lagrange’s equations for the second 
configuration of the micromirror, and using (22)-(25) the 
equations of motion become 
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(27) 

3. The static behaviour of the DMD 
The static equations of the micromirror when subjected to 
step voltages for both the first and second configurations 
is obtained by setting the time in (26)-(27) equal to zero.  
To solve numerically for the static positions of the 
micromirror’s motion in the first configuration, first we 
assume V2 zero and we increase V1 value from 0 until 
getting instability (Pull-in). Figs 3 and 4 show the torsion 
static deflection and the bending one respectively in term 
of V1 for V2=0 for both the first and the second 
configurations. It can be concluded that as the voltage V1 
is increases, the system tends to reach pull-in instability.  
When solving for the static positions for different 
V2voltages (Figs. 3 and 4), we conclude that as 
V2increases pull-in tilting angle decreases and pull-in 
downward bending increases for the first configuration: 
this seems to be expected since V2 tends to increase 
attracting forces beneath the yoke and the mirror, thus, the 
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transverse deflection is more considerable. It can be also 
noticed from Figs. 3 and 4 that increasing V1 for a 
constant values V2 leads to move up the static position 
until instability occurs. On the other hand, increasing V2 , resulted in a decrease of the the pull-in tilting angle value, 
and an increase in the pull-in bending value. 
 

   
Fig. 3: Variation if the static torsion versus the applied voltage 1V  for 

the two configurations (for different values of 2V ). 

             
Fig. 4: Variation if the static bending versus the applied voltage V1 for 

the two configurations (for different values of V2). 

4. The linear vibration problem 
The major point of this section is the dynamic analysis of 
linear vibrations of the DMD for different DC voltages 
using the obtained model. The natural frequencies, for the 
torsion and the bending, are determined while varying the 
voltages V1 and V2 for the first configuration. Figure 5 
shows the variation of the first natural frequencies for 
both the torsion and the bending motion of the DMD. We 
can conclude that increasing the applied DC voltage V1 
yields a drop in both natural frequencies and finally the 
pull-in instability is reached. The first natural frequency of 
torsion goes to zero at pull-in and that of the bending one 
undergoes significant reductions. 
 

  
Fig. 5: Variation if the natural frequency with the applied voltage 1V  for 

the torsion and bending motion (for different values of 2V ). 

5. Control of the DMD vibration 
In this section, we will derive all the instant of times that 
will specify the overall mechanical switching response of 
the DMD system. In our model, we consider two 
parameters: The first one is the switching voltage and the 
second is the switching time needed to switch between the 

two previously presented configurations in Section 2.2.2. 
For the switching voltage, we will consider 1V  as 

maximum at all times and 2V  as maximum at all times. 
This procedure is known as the Bang-Bang method. For 
instance, we will consider a passage between the first 
configuration, and then the second one and finally we 
return to the first configuration. We are summarizing this 
in the following diagram: 
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As we can notice, we have here four unknowns to solve 
for> We hence consider four conditions which are: 
 

3 31 1 2 2
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t t t tt t t t t t t t
t t
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=
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In optimal control problems, it is sometimes the case that 
a control is restricted to be between a lower and an upper 
bound. If the optimal control switches from one extreme 
to the other at certain times (i.e. is never strictly in 
between the bounds) then the control is referred to as a 
Bang-Bang control or a Bang-Bang solution. 
Bang-Bang controls frequently arise in minimum time 
problems. For example if it is desired to stop a car in the 
shortest possible time after a traffic light turns red, the 
solution is to apply maximum braking as soon as the light 
changes. This solution (a rather uncomfortable one for the 
passengers) is a Bang-Bang solution: no braking followed 
by maximum braking. Such solutions also arise when the 
Hamiltonian is linear in the control variable; application 
of Pontryagin's minimum principle will then lead to 
pushing the control to its upper or lower bound depending 
on the sign of the coefficient of u in the Hamiltonian. 
A primitive type of feedback Bang-Bang control 
technique that is used in systems that are slow and/or 
poorly designed. It consists of the following logic:  

 If the output is less than your target, then go full 
forward; 

 If the output is greater than your target, then either 
go full reverse turn off; 

 If we do this, the system is sometimes called an 
on-off control system.  

There are three major problems with this method:  
 It is extremely unstable. If you have any significant 

delay introduced in your feedback step, you are going 
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to see an unpleasant oscillation around the target 
value that will never peter out.  

 It is noisy. It was called 'bang-bang' control due to the 
noise that it made in mechanical implementations of 
the system. In electronic methods, it can cause power 
surges and ringing in the circuit as the control 
switches on and off.  

 It is not ergonomic. Most humans like to have some 
steady acceleration with a minimization of jerk.  

Bang-Bang control is commonly found in old refrigeration 
and air conditioning systems. It is also found in programs 
written by otherwise knowledgeable coders who think 
they can solve the mechanical and electronic problems 
raised by this method in software. Slightly less clueless 
programmers will use proportional control. More clever 
ones will use PD control, PID control, or fuzzy logic.  
 
Applying a step voltage to the system drives the 
Micromirror through a set of vibrations around the static 
positions. To evaluate the accuracy of the 2nd order 
nonlinear approximate solution, we use MATHEMATICA 
to compute a numerical solution for the system defined by 
the 2 nonlinear equations of motion described in the 
previous chapter. The applied step voltage is illustrated in 
Fig. 6. To obtained DMD tilting angle function after 
applying the step voltage is shown in Fig. 7. 
 

0 1000 2000 3000 4000 5000

- 20

- 10

0

10

20

v2

v1

 
Fig. 6: The applied Step Voltage 
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Fig. 7: The response of the system to the applied step voltage 

 
We finally compare in Fig. 8 the obtained controlled 
response with the one provided by TI in the literature.  
 

 
Fig. 8: The Bang-Bang response versus the TI response. 

 

6. Conclusion 
In this work, we considered the control of the DMD 
angular motion using Bang-Bang technique. The design of 
the control was based on a model formed of two ordinary 
differential equations which couple the bending and 
torsion motions of the micromirror. This work is 
applicable to drive the DMD device to angles below pull-
in threshold. Current research focuses on the control 
robustness against parameters uncertainties and internal 
disturbances. In particular, the ZVD shaper done by 
Chaabane et al [7] and other shaping techniques will be 
applied to satisfy certain criteria with regard to system 
performance including control robustness. 
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