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Abstract—Singular spectrum analysis (SSA) is adopted
to the time series of the monthly equatorial precipita-
tion data observed at three stations, Nakuru [1904-1991],
Naivasha [1950-1985], and Narok [1913-1991], in Kenya,
to explain how climate works in tropical East Africa.
By singular value decomposition (SVD) method in the
SSA technique, basically, the bivariate precipitation data is
mathematically decomposed and then a similarity between
the two kinds of time series is discussed. A comparison of
the data is performed by a heterogeneous correlation and
an expansion coefficient. Annual structures obtained by es-
timates of this correlation show a similar form in each pair
of the stations. 1-st expansion coefficient which explains
the most dominant feature in the precipitation, shows rel-
atively high values in rainy season of spring. In the next
study some sub time series with background features can
be represented by applying caterpillar-SSA to each single
time series. A harmonic curve of 12 month cycle resulted
in the 1-st mode by using this method can be interpreted as
the most dominant characteristics in the time series. Such
a result can be obtained at all the stations, i.e. there exists
such a common seasonal cycle in Kenya. And results of the
shorter cycles in a seasonal sense obtained from the other
sub time series, can be interpreted as cycles of a rainy sea-
son. On the other hand, 15 month cycle is shown in the
higher modes of the sub time series in Nakuru, which may
be interpreted as an irregular period in the sense of annual
cycle.

1. Introduction

One of the goals of time series analysis is an extraction of
properties from time series by using the singular spectrum
analysis (SSA) based on the principal component analysis
(PCA). In many previous studies of the SSA, successful
findings have been provided [1–5,7]. A basic advantage of
the SSA is possible to apply to both of a square matrix and
a rectangular matrix [1]. Besides, some spots which should
be notable in all field are as follows: 1.finding trends of
different resolution; 2.smoothing; 3.extraction of seasonal-
ity components; 4.simultaneous extraction of cycles with
small and large periods; 5.extraction of periodicities with
varying amplitudes; 6.simultaneous extraction of complex
trends and periodicities; 7.finding structure in short time
series; and 8.change-point detection. The above points will
lead well into interpretation of an objective time series [5].

In section 2, procedures of the SSA are briefly explained:
i) comparative analysis of bivariate data and ii) analysis for
a single time series. Then section 3 describes their results.
Especially, in the first approach the similarity between two
different data is discussed and the results of the next ap-
proach are focused on the 3. and 4. of the above 8 prob-
lems. Finally, some conclusions are described in the sec-
tion 4.

2. Methods

SSA is essentially a model-free technique. In order to
find out background properties in observed data series, this
method will decompose the original time series into the sub
time series. These decomposition time series are shown, in
principle, in descending order of strong correlation for the
original time series, because it follows a similar process to
the eigenvalue decomposition.

2.1. Singular Value Decomposition (SVD)

If there are bivariate or multivariate data, SVD in the
SSA can be applied to each pair of data.
Assume that there are two different kinds of standard-

ized data matrices, X : (n × m) and Y : (n × l). The co-
variance/correlation matrices of them will be calculated as
follows:

C = XTY. (1)

By using the SVD method the matrix can be formed

C = USVT , (2)

where the columns of matrix U are the singular vectors
for X, the columns of matrix V the singular vectors for Y,
and then the diagonal S contain the singular values(

√
λ1 ≥

· · · ≥
√
λd > 0, d = min(m, l)). The k-th singular vec-

tor means in general a representation of the k-th dominant
spatial patterns for the original time series. In order to find
time series describing how each mode of variability oscil-
lates in time, the expansion coefficients are defined as fol-
lows [1–3]:

EX = XU, EY = YV. (3)

2.2. Caterpillar-SSA Technique

Consider that there is a single time series of length N,
Y = (y1, · · · , yN). The process of caterpillar-SSA is, mainly,
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constructed by a decomposition of the single time series
and a reconstruction of the elements.
In the decomposition process, firstly, the single time se-

ries will be transformed into the multidimensional one with
the following lagged vectors,

Xk = (yk, · · · , yk+L−1)T , 1 ≤ k ≤ K, (4)

i.e., it is to create a Hankel matrix form [4–6], which is a
trajectory matrix with (L × K),

X = [X1, · · · , XK] = (xi j)L,Ki, j=1. (5)

The lag number L called a window length, is an integer
such that 2 < L < N. Then let us define K = N − L+ 1 as a
parameter. The relationship between i and j in the Eq. (5)
is diagonally constant.
In the next step, the SVD will be applied to the trajectory

matrix. This method estimates two kinds of eigenvalues
from matrices such as M = XXT and N = XTX. Sets
of the eigenvalues, ΛM and ΛN are sorted in descending
order of magnitude. Note that, however, the intersection of
them consists of positive elements (

√
λ1 ≥ · · · ≥

√
λd > 0,

where d = min(L,K)). If Vi = XTUi/
√
λi is defined, then

the SVD of the X can be written as

X = X1 + · · · + Xd, (6)

where the matrix Xi can be reformed as Xi =√
λiUiV

T
i , (i = 1, · · · , d), having rank 1. The collection

(
√
λi,Ui,Vi) is called the i-th eigentriple of the matrix X,

where
√
λi is the singular value, Ui empirical orthogonal

functions (EOFs) and Vi principal components (PC) [4, 5].
In order to reconstruct sub time series from the matrices

Xi the grouping of them and the summation of the grouped
one will be performed firstly. If a group of indices is as-
sumed as I = {i1, · · · , ip}, the matrix XI can be defined as
XI = Xi1 + · · ·+Xip . Therefore, the trajectory matrix X can
be represented as X = XI1 + · · ·+XIM . The above procedure
is called the eingentriple grouping.
In the last step of the reconstruction the procedure called

the diagonal averaging transfer [4,5] will be applied to each
matrix, XI , (I = 1, · · · ,M).
Assume that there is an (L×K) matrix, XI with elements

x
(I)
i, j
, then the matrix has to be transformed to a standardized

matrix by

X∗
I = (x

∗(I)
i j

)L,K
i, j=1, x∗i j =

(xi j − x̄ j)
s j

, (7)

where x̄ j and s j are a mean and a standard deviation re-

spectively [7]. Elements of reconstructed time series, ỹ(I)n
can be estimated by the diagonal averaging as a following
formula [4, 5]:

ỹ(I)n =























1
n

∑n
m=1 x

∗(I)
m,(n−m+1) (1 ≤ n < L)

1
L

∑L
m=1 x

∗(I)
m,(n−m+1) (L ≤ n < K)

1
N−n
∑N−K+1
m=n−K+2 x

∗(I)
m,(n−m+1) (K ≤ n < N)

, (8)

whose estimates lead to the original time series as follows:

Y ≈ (ŷ1, · · · , ŷM) + ”trend term”, ŷt =
M
∑

s=1

ỹ
(s)
t . (9)

3. Applications

In this study, the SSA is applied to precipitation data
time series at three stations, Nakuru ([1904-1991], 1056
points), Naivasha ([1950-1985], 432 points) and Narok
([1913-1991], 948 points), in Kenya (see the fig.1) from
GHCN v2 database (http://www.ncdc.noaa.gov/). In
subsection 3.1, these data will be used just for an overlap-
ping time range ([1950-1985]) of all the stations. Next ap-
proach in subsection 3.2 will adopt the whole data.
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Figure 1: Monthly precipitation in Nakuru, [1904-1991]
(left panel), in Naivasha, [1950-1985] (middle panel),
and in Narok, [1913-1991] (right panel) from GHCN v2
database.
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Figure 2: Monthly precipitation [1950-1985], (top panels)
and the averages [Jan.-Dec.], (bottom panels): Nakuru (left
panels); Naivasha (middle panels); Narok (right panels).

3.1. Correlation Coefficient of Bivariate Data

First approach is to investigate some similarities of bi-
variate precipitation data by the SVD. These data matrices,
however, consist of two kinds of elements that the columns
are monthly and the rows are yearly, i.e. the time scales are
shown in the both of elements instead of time and space
scales. Here, the number of years in the rows is conve-
niently edited to the overlapping time range, which is, in
this case, for 36 years ([1950-1985]), as shown in the figure
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2. As a comparison method of the bivariate data, correla-
tion coefficients between expansion coefficients defined in
Eq. (3) and the observed data will be estimated.
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Figure 3: The heterogeneous correlation coefficients:
Nakuru-Naivasha (solid line) and -Narok (dashdot-), (left
panel); Naivasha-Nakuru (solid-) and -Narok (dashdot-
), (middle panel); Narok-Nakuru (solid-) and -Naivasha
(dashdot-), (right panel).

The figure 3 shows the correlation coefficients between
1-st expansion coefficient at one station and the observed
data at the other station, which is called a heterogeneous
correlation. The results represent that these years struc-
tures are similar with each other in all the cases of bivariate
data. However, the left panel of figure 3 showing the het-
erogeneous correlation coefficients between Naivasha and
Nakuru and that between Narok and Nakuru results that the
first pair correlates slightly stronger than the second pair.
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Figure 4: The time series of monthly expansion coefficients
at the 1-st mode for the precipitation data: Nakuru (solid
line) and Naivasha (dash-), (left panel); Nakuru (solid-) and
Narok (dash-), (middle panel); Naivasha (solid-) and Narok
(dash-), (right panel).

Furthermore, the time series of the monthly expansion
coefficients for each of them are shown in the figure 4. In
April and May there are relatively strong coefficients. The
result corresponds to a long rainy season as shown in the
bottom panels of figure 2, which can be, thus, regarded
as one of the dominant properties of the precipitation in
Kenya.

How many modes should be taken as the useful com-
ponents by the SVD can be estimated by the Frobenius
norm [4] which is a sum of squared singular values, S . The
contribution ratio can be quantified as the squared covari-
ance fraction (SCF) and the cumulative SCF (CSCF) [1]:

SCF(m) =
l2m
∑R
r=1 l

2
r

, CSCF(m) =

∑R
m=1 l

2
m

∑R
r=1 l

2
r

, (10)

where l =
√
λ. The results are shown in the figure 5. The

valid modes should be, at the longest, chosen until the 8-
th component in all the cases, because the ratio already
reaches mostly 100%. It means that the original data may
be mostly explained by the information of such modes.
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Figure 5: The SCF (top panel) and the CSCF (bot-
tom panels): Nakuru-Naivasha (solid line); Nakuru-Narok
(dashdot-); Naivasha-Narok (dash-).

3.2. Caterpillar SSA

The caterpillar SSA [4,5] will be applied to a single time
series of precipitation so that the background properties can
be shown from the precipitation. Firstly, it has to be trans-
formed to a matrix form by using the Hankelization tech-
nique [4–6]. An expansion parameter K for creating the
matrix is, in principle, assumed as K < N/2, here, as a
tenth of the data length, (K = N/10), which is then called
caterpillar length [4,5]. From the results of the singular val-
ues spectrum and the SCF in the figure 6, it is possible to
separate the time series reconstructed by the diagonal aver-
aging defined in the Eq. (8) into several groups: the group
1. (1-st,2-nd) mode, -2. (3-rd,4-th), -3. (5-th,6-th), -4. (7-
th,8-th), and so on [4, 5]. The results from the group 1. to
-3. in the figure 7 are actually not surprising because they
are typical seasonal cycles (corresponding to 12-, 6-, and 4
months). Note that there is, however, an untypical period
in the seasonal sense in the group 4., which is 15 month
cycle. Indeed the contribution of these eigentriples for the
original data is low as shown in the figure 6, but this finding
may admit of an interpretation that there is some irregular
cycle in the precipitation separately from seasonal cycles.

4. Conclusions

In this paper, the two different kinds of the SSA tech-
niques are applied to the precipitation data in Kenya, to in-
vestigate climate features of a tropical East Africa. The ap-
proach to comparing the precipitation at different locations
provides that there are a similarity of years structures and
relatively high correlations in the spring rainy season, and
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Figure 6: The singular value spectrum with semilogarithm
scale (top panel), the SCF (bottom left panel), the SCF with
a zoom, 3rd-20th (bottom right panel) of Nakuru.

all the data can be explained by 8 components by the esti-
mates of the contribution ratio. By the caterpillar SSA not
only some properties of seasonal harmonics are extracted,
but also obviously the anomaly period in the seasonal sense
can be found from the time series reconstructed by the di-
agonal averaging. Since this anomaly period is, however,
not yet considered enough from a climate point of view in
this paper, it is necessary to associate results with more de-
tail climate background in the future work.
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