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Abstract—Spatially localized and temporally periodic
solutions exist in a nonlinear coupled oscillator arrays. Be-
cause the energy of the solution is localized within a few
sites, localized solutions exist even in a two-degree-of-
freedom system. In this paper, bifurcations regarding the
localized solutions are investigated by using the simple av-
eraging method. Bifurcation sets are derived analytically
and it is confirmed numerically.

1. Introduction

In micro-/nano-engineering, spatially periodic structures
are easily fabricated and often used to realize some novel
functions. Those are often modeled as coupled oscillators
array, namely, coupled ordinary differential equations. As
the scale of devises decreases, the magnitude of deflec-
tion should be relatively large because the thermal fluctua-
tion tends to be comparable with the size of the structures.
Therefore, nonlinearity becomes remarkable especially in
nano-scale structures.

Intrinsic localized mode (ILM) is known as a spatially
localized and temporally periodic solution in nonlinear
coupled oscillator arrays, which was first discovered by
A. J. Sievers and S. Takeno in 1988 [1]. In this decade,
it has been reported that observation and manipulation on
ILM in experiments [2]. A micro-cantilever array is one of
which ILM is observed and manipulated [3, 4]. The can-
tilever array is modeled as a nonlinear coupled ordinary
equations. By using the model, we revealed the mecha-
nism of traveling of ILM and proposed manipulation meth-
ods [5].

A macro-mechanical cantilever array is fabricated for
experimental studies on ILM [6]. The macro-cantilever ar-
ray is also derived by a coupled ordinary differential equa-
tions. Existence of standing ILM which is pinned at a site
of array is already confirmed in both experimentally and
numerically. However, a lot of things such as bifurcations
or global phase structure is not clarified. This paper aims to
clarify the dependence property of bifurcations of localized
solutions on the linear coupling coefficient in a two-degree-
of-freedom system.

2. Two coupled oscillator

Two cantilevers which are coupled each other are
schematically shown in Fig. 1. Each cantilever has a per-
manent magnet (PM) attached at the free-end, and an elec-
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Figure 1: Schematic configuration of a cantilever. (a):
Front view. The cylindrical permanent magnet (PM) is
attached at the free-end of cantilever. The electromag-
net (EM) is placed beneath PM with distance of d0. (b):
Side view. u denotes the tip displacement of cantilever. (c):
Two coupled cantilevers.

tromagnet (EM) is placed to face PM. Coupling between
two cantilevers is caused by the torsional deformation of
the coupling rod.

Due to the Euler-Bernoulli beam theory and the
Coulomb’s law of magnetic charge, a coupled ordinary dif-
ferential equation

ün = −ω2
0un −C(2un − un+1 − un−1) + χ

un(
u2

n + d2
0

) 3
2

(1)

is obtained, where un denotes the displacement of the tip of
cantilever from the equilibrium position. Natural frequency
of a cantilever with PM is ω0 which is 2π × 35.1 rad/s.
Coupling coefficient is represented by C. The third term on
the right-hand side of Eq. (1) is contribution of magnetic
interaction. The distance between PM and EM when the
cantilever is at the rest is denoted by d0 = 3.0 mm. The
magnitude of the contribution of magnetic force, χ, can be
adjusted by the current flowing in EM. In this paper, the
conservative system is considered. Then the damping and
the external excitation are neglected.

3. Temporally periodic solution

Numerically obtained periodic solutions are shown in
Fig. 2. Here, boundaries are fixed, namely, u0 = u3 = 0.
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(a) Even mode
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(b) Odd mode

Figure 2: Wave forms of temporally periodic solutions.
The frequency of the solutions is 37 Hz. Parameter setup:
χ = −2.66 × 10−4 m3/s2, C = 284 s−2.

Two kinds of solutions are found, even-mode and odd-
mode. For even-mode, both cantilever have the same am-
plitude as shown in Fig. 2(a). On the other hand, for odd-
mode, a cantilever oscillates with large amplitude while the
other almost rests around the equilibrium state. Fig. 2(b)
shows the wave form of odd-mode.

4. Bifurcation set

4.1. Local bifurcations

Since Eq. (1) is a conservative system, the total energy
is a bifurcation parameter of the periodic solutions. Fig. 3
shows a bifurcation diagram of even-mode and odd-modes
with respect to the total energy of the system. In the figure,
O(O’) and E correspond to the solution shown in Fig. 2(b)
and Fig. 2(a), respectively. As shown in the inset of Fig. 3,
stable odd-modes O(O’) and an unstable even-mode E ap-
pear with the pitch-folk bifurcation (PF1). As the total en-
ergy increases, another pitch-folk bifurcation (PF2) occurs.
At PF2, the even-mode gains the stability and two unsta-
ble odd-modes newly appear. In this regime, five solu-
tions coexist, namely, one stable even-mode and two sta-
ble odd-modes, and two unstable odd-modes. The stable
and unstable odd-modes disappear through saddle-node bi-
furcation (SN) at higher energy state. After the saddle-
bifurcation occurs, only the stable even-mode remains.

Figure 4 shows the frequency dependence of the ampli-
tude. The frequency of periodic solutions decreases as the
amplitude increases, because each cantilever has the soft
spring characteristics [6]. As shown in Fig. 4(b), the O-
branch has a peak at 35.3 Hz. In fact, the peak corresponds
to SN shown in Fig. 3.

4.2. Averaging

The frequency dependence gives the frequency range
where stable odd-modes exist. As shown in Fig. 4, the sta-
ble odd-modes exist between SN and PF1. To predict when
the bifurcations occur, the averaging method is applied to
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Figure 3: Bifurcation diagram for temporally periodic so-
lutions. Dashed and solid curves indicate even and odd
solutions, respectively.
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Figure 4: Solutions with respect to their frequency. (a)
Overview. (b) Enlargement around the bifurcation point
PF1. (c) Enlargement around the bifurcation point SN and
PF2.

Eq. (1). un(t) is substituted by An cosωt, and we have,

−ω2An cosωt = −ω2
0An cosωt −C(2An − An+1 − An−1) cosωt

+χ
An cosωt(

A2
n cos2 ωt + d2

0

) 3
2

. (2)

Although the last term of the equation contains cosωt in
the denominator, the following approximation is applied
for simplicity.

χ
A cosωt{

(A cosωt)2 + d2
0

} 3
2

→ χ A cosωt√
5
16 A6 + 9

8 A4d2
0 +

3
2 A2d4

0 + d6
0

. (3)
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For the two coupled cantilevers, the following algebraic
equation is consequently obtained,



ω2 = ω2
0 +C

(
2 − a2

a1

)
− χ

d3
0

1√
5

16 a6
1 +

9
8 a4

1 +
3
2 a2

1 + 1
,

ω2 = ω2
0 +C

(
2 − a1

a2

)
− χ

d3
0

1√
5

16 a6
2 +

9
8 a4

2 +
3
2 a2

2 + 1
,

(4)

where an = An/d0.

4.3. Bifurcation sets

4.3.1. PF2

The amplitude of solutions is sufficiently larger than d0,
namely, an ≫ 1. Therefore, the low-order terms in the
denominator of the nonlinear term in Eq. (4) are negligible.
The highest term of a6

n is only considered and we have,
ω2 = ω2

0 +C
(
2 − a2

a1

)
− 4
√

5

χ

d3
0

1
a3

1

,

ω2 = ω2
0 +C

(
2 − a1

a2

)
− 4
√

5

χ

d3
0

1
a3

2

.

(5)

From above equation, a fourth-order polynomial is ob-
tained:

â4 + Kâ3 − â2 − K = 0, K =
4
√

5

χ

Cd3
0

1
a3

1

, (6)

where â = a2/a1. Eq. (6) may have four solutions. One of
them is â = 1 which corresponds to the even-mode. On the
other hand, solutions that â , 1 imply odd-modes. Gen-
erally, it is difficult to calculate them for the fourth-order
polynomial. However, these solutions degenerate to â = 1
at the bifurcation point PF2. Therefore, we only focused on
when Eq. (6) has the multiple root of â = 1. By substituting

â by 1 − ϵ and taking the first-order of ϵ, we have K = −2
3

.
Finally, the amplitude and angular frequency of solution at
the bifurcation point PF2 is obtained as follows:

APF2 = A1 =

(
− 6
√

5

χ

C

) 1
3

, (7)

ω2
PF2
= ω2

0 +
5
3

C. (8)

4.3.2. SN

The ratio between amplitude of cantilevers becomes
large at the saddle-node bifurcation point SN as shown in
Fig. 4. If â = a2/a1 ≫ 1, (2− a1/a2) is similarly equal to 2
in Eq. (2). Then, the following polynomial is obtained:

Wâ3 −Câ2 +Câ −W = 0, W = ω2
0 + 2C − ω2. (9)

By factorizing the above equation using the fact that â =
1 is a root, we have the second-order polynomial Wâ2 −

(C −W)â +W = 0. In this case, only angular frequency is
obtained as:

ω2
SN = ω

2
0 + 2C, (10)

because â is assumed to be infinite.

4.3.3. PF1

The upper boundary of the frequency range that stable
odd-modes exist is the pitch-folk bifurcation point labeled
PF1. At this point, the amplitude of both cantilevers is
small with respect to d0. Then we take Taylor expansion
of Eq. (1), and we have

χ
un(

u2
n + d2

0

) 3
2

∼ χ
d3

0

un −
3
2
χ

d5
0

u3
n +

15
8
χ

d7
0

u5
n +O(u7

n). (11)

Substituting Eq. (11) and un(t) = An cosωt into Eq. (1)
gives
ω2 =

ω2
0 + 2C − χ

d3
0

 −C
A2

A1
+

9χ
8d5

0

A2
1 −

75χ
64d7

0

A4
1

ω2 =

ω2
0 + 2C − χ

d3
0

 −C
A1

A2
+

9χ
8d5

0

A2
2 −

75χ
64d7

0

A4
2

(12)

From above equation, a fifth-order polynomial of â =
A2/A1:

−Câ +
9χ
8d5

0

A2
1 −

75χ
64d7

0

A4
1

= −C
1
â
+

9χ
8d5

0

A2
1â2 − 75χ

64d7
0

A4
1â4. (13)

As the same as the case of PF2, â = 1 is a trivial root.
Thus the same method is applied to Eq. (13). As a result, a
second-order polynomial of A2

1 is obtained as

1
2

A4
1 −

6d2
0

25
A2

1 −
16Cd7

0

75χ
= 0, (14)

and finally we have

A2
PF1
= A2

1 =
6

25
d2

0 −

√(
6
25

d2
0

)2

+
32
75

C
d7

0

χ
, (15)

ω2
PF1
= ω2

0 +
1
2

C − 173
200
χ

d3
0

− 27
200
χ

d3
0

√
1 +

200d3
0C

27χ
.

(16)

4.3.4. Comparison with numerical results

Numerically obtained bifurcation sets are shown in
Fig. 5 with the analytical results. In the weak coupling
regime, the analytical lines(curve) almost coincide with the
numerical curves. In addition, for both analytical and nu-
merical, the frequency range where stable odd-modes ex-
ist tends to be narrow as the coupling coefficient becomes
large.
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Figure 5: Bifurcation sets for χ = −2.66 × 10−4 m3/s2.
Solid curve corresponds to numerical results and the other
lines and curves are drawn by Eqs. (10), (8), and (16).
For PF1, another result is shown with dotted line which is
ω′2PF1

= ω2
0 −
χ

d3
0

. This is obtained by considering the first

and third terms in the Taylor series of the nonlinear term.

The enlargement of the bifurcation set of PF1 is shown
in Fig. 5(b). For C < 800 s−2, Eq. (16) is a good approx-
imation. However, around C = 1300 s−2, the right hand
side of Eq. (16) becomes negative. Thus Eq. (16) does not
have the real solution for the strong coupling regime. The
case that only the first and the third terms of Eq. (11) are
taken into account is also shown with the dotted line. Be-
cause the analytical solution does not contain the coupling
coefficient, the line is parallel to the x-axis.

For PF2 and SN, the enlargement is shown in Fig. 5(c).
As already mentioned before, each analytical line almost
coincides with the corresponding numerical curve in the
weak coupling regime. However, the error for PF2 seems
to be large even though C is sufficiently small. This implies
that the large amplitude approximation is not suitable. In
addition, disappearance of the branch for PF2 and SN is not
predicted by the analytical results.

Although the errors between analytical and numerical re-

sults tend to be large as the coupling coefficient becomes
large, the analytical results give the necessary condition of
frequency so that the stable odd-modes exist.

5. Conclusion

In this paper, local bifurcations of periodic solutions in
the system of two coupled cantilevers were analytically in-
vestigated by using the averaging method and appropriate
approximations. As results, the analytical representation
of bifurcation sets was obtained. By comparing with nu-
merical results, it was shown that the analytical is valid for
the weak coupling regime. Therefore, the analytical results
allow us to predict the frequency range where the stable
odd-mode exists.

In many degree-of-freedom system, the odd-modes in
the two coupled system corresponds to intrinsic localized
modes at least in the weak coupling regime because of the
anti-continuous limit [7]. Therefore, the results in this pa-
per can be applied to the intrinsic localized modes.
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