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Abstract– The design of a MEMS frequency up-

converter is described in this paper, the MEMS device 

relies on the highly nonlinear phenomena of electrostatic 

pull-in and hysteresis in order to multiply the input 

frequency by a significant factor, possibly up to several 

orders of magnitudes. An analytical solution of the 

performance of the device is obtained using a spring-mass 

model, and the optimal values of physical parameters are 

also derived analytically. This frequency up-converter is 

designed in view of a specific application which is to 

provide efficient energy harvesting for cardiac medical 

implants. 

 

1. Introduction 

 

The highly appealing prospect of supplying ultra-low 

power electronics with their energy by integrating an 

energy scavenging device is most often impaired by the 

low efficiency of energy harvesters, this issue is further 

exacerbated by the lack of high frequency environmental 

excitation where mechanical-to-electrical energy 

conversion is more efficient. In literature several 

frequency up-conversion MEMS devices have been 

suggested [1]-[3]. In this work, an efficient electrostatic 

MEMS frequency up-converter is presented operating on 

the principle of electrostatic pull-in. 

 

2. Modelling 
 

The MEMS device used in this work is depicted 

schematically in Fig. 1, where it consists of two MEMS 

resonators: the first is a low frequency resonator hereon 

labeled seismic resonator with a natural frequency within 

the bandwidth of the input excitation, and represented in 

Fig. 1 by the mass-spring system denoted MS and KS 

respectively. The second high frequency resonator, is 

depicted with the lumped elements K and M in Fig. 1. 

The seismic mass is covered by a dielectric layer of 

thickness h and a relative dielectric constant εr, and a 

constant voltage difference V is maintained between the 

two resonators whose respective proof mass constitute the 

electrodes of a parallel plate capacitor.  

The attractive force between the two electrodes (formed 

by the masses M and MS) is thus given by: 
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where Felec, ε0, εr , A, X are the electrostatic force between 

the two plates, the vacuum permittivity, the relative 

permittivity of the dielectric, the electrode’s surface area, 

and the separation between the proof mass respectively. 

Upon external excitation of the seismic resonator the 

seismic mass moves to a sufficiently near distance to the 

high frequency resonator to cause a pull-in effect [4]. The 

high frequency oscillator is thereafter entrained by the 

seismic resonator as the latter returns to an equilibrium 

position. This entrainment proceeds until the electrostatic 

force is no longer sufficient to maintain the two electrodes 

stuck, and at which point and due to the hysteretic effect 

of electrostatic pull-in, the high frequency oscillator is 

released and oscillates with large amplitudes near its 

natural frequency (“near” because it is situated in an 

electrostatic potential well which results in nonlinear 

oscillations), these oscillations are thereafter converted to 

electrical energy using a separate transduction system.  

It is important at this point to identify the effect 

responsible for converting energy into high frequency 

domain not as the impact caused by the pull-in, ideally 

that impact will carry very little energy, but by the 

entrainment and sudden release of the proof mass of the 

high frequency resonator as caused by the hysteretic 

behavior of the electrostatic force. 

By noting the critical position at which the oscillator is 

released as Xcr, it is possible to express Xcr using the 

equilibrium of electrostatic and elastic force, i.e. Felec = 

Felastic = KXcr. 

By assuming that the seismic resonator is driven near its 

natural frequency ω0, and denoting its maximum 

displacement as δ. It is possible to express the equation 

describing the common motion of the two resonators 

(once they are stuck) as: 
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where  is given as 

S

S

K

M
Qa0 , and the solution to the 

above differential equation is: 
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The energy transferred from the seismic resonator to the 

high frequency oscillator is expressed as follows: 

inpullelectelasticKineticT EEEEE                 (4) 

Where ET represents the total energy transferred into high 

frequency oscillations, EKinetic represents the kinetic energy 

of the high frequency resonator proof mass at the moment 

of pull-off, Eelastic is the elastic energy stored in the spring 

of the high frequency oscillator at the moment of pull-off, 

Eelec represents the electrostatic potential well that the high 

frequency oscillator needs to overcome as it oscillates 

after detachment, finally Epull-in represents the energy lost 

during the pull-in phase between the two resonators. Note 

that Eelec need not be completely lost, however, equation 

(4) represents an upper limit for dissipation due to the 

electrostatic potential well and to electrical dissipation in 

charging the capacitance. 

Finally by defining the separation dependent capacitance 

as  
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 it is possible to express each of the 

energy terms in equation (4) as follows: 
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where in the above sets of equations i represents the 

current provided by the constant voltage source to the 

variable capacitance during pull-in, and q is the charge. 

In equation (5), Epull-in represents a certain upper limit on 

dissipation that includes mechanical energy lost upon 

impact, and energy dissipated in form of stored 

electrostatic charge in the variable capacitor formed by the 

two resonators’ proof mass. 

Therefore the total energy transferred into the high 

frequency resonator is given by: 
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By injecting the expression for the time dependent 

deformation into (6) and deriving with respect to time, it 

is possible to obtain the detachment length that maximizes 

ET as: 
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where Q is the quality factor of the seismic resonator, and 

a0 is the excitation acceleration, this also corresponds to a 

zero kinetic energy, i.e. detachment takes place at the 

point where maximum oscillation amplitude is reached 

and the velocity is momentarily zero. 

Finally if efficiency is defined as the ratio of the energy 

transferred to the high frequency resonator to that initially 

stored in the seismic resonator, then efficiency η is given 

as: 
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Fig. 1. Schematic representation of the MEMS frequency 

up-converter showing the main physical parameters and 

the magnitude of oscillation of the seismic mass () and 

the detachment length (Xcr). 

 

3. Simulation Results 

 

As a case study, compliant with cardiac medical 

application, a system with the following properties is 

considered MS = 2 g, 0 = 45 rd/s, KS = 4 N/m, Q = 10, a0 

= 0.1 m/s², A = 10-6 m², and r = 3.9 (equivalent to that of 

SiO2) resulting in Xcr = 500 µm, V = 7.5V for h = 1 µm, 

and V = 75V for h = 10 µm. 

The dynamics of the above system were obtained using a 

1-dimensional finite time difference algorithm 

implemented in MATLAB. The time evolution of the 

system as shown in Fig. 2, where the graph shows the 

seismic resonator starting with an initial displacement 

amplitude  = g, where g is the initial gap between the 

two proof mass. The plot in Fig. 2 identifies the pull-in, 
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the entrainment of the high-frequency proof mass along 

with the seismic resonator, and the detachment of the two 

electrodes (constituted by the proof mass) at the critical 

displacement. Once the two resonators are detached, most 

of the oscillation energy is transferred from the low-

frequency towards the high-frequency resonator, as can be 

noted from the respective amplitudes of vibration after 

detachment. 

The hysteretic loop behavior of the system is shown 

plotted in Fig. 3, the plot in this case is for the summation 

of forces acting on the proof mass in arbitrary units, 

plotted as a function of the normalized displacement of 

the high frequency resonator’s proof mass. 

Since the critical displacement sets the efficiency of the 

system, and since the point of detachment depends on the 

electrostatic force and hence on the applied voltage, there 

exist a dependence of the overall energy transfer on 

voltage. This dependence is shown in Fig. 4, where the 

efficiency is plotted as a function of the voltage 

(normalized to the optimal voltage). 

The converted energy and the efficiency of the conversion, 

η, is also plotted in Fig. 5 as a function of K/KS. Note that 

if the term (h/εr) is small compared to Xcr, the efficiency 

approaches 100% this is demonstrated in Fig. 4 when 

comparing the efficiencies of h = 1µm and h = 10 µm. 

 
Fig. 2. Dynamics of the system where the seismic 

resonator (black) starts with an initial displacement, and 

the high frequency resonator (red) starts from rest, plotted 

as a function of time (normalized with respect to the 

period of the seismic resonator), the plot identifies the 

pull-in, the entrainment, the pull-off, and the post 

detachment oscillations showing the transfer of energy 

from the seismic resonator to the high frequency resonator. 

 

 
Fig. 3. Hysteretic behavior of the system shown as the 

summation of forces acting on the proof mass of the high 

frequency resonator plotted as a function of displacement, 

the diagram identifies, the pull-in, the entrainment, the 

release, and the eventual oscillations. 

 

 

 
Fig. 4. Sensitivity of the low to high frequency conversion 

on variation in voltage normalized with respect to optimal 

voltage. 

 

 

Fig. 5. Graphical representation showing the energy 

(black lines), and efficiency (blue lines) for h = 1µm 

(solid line), and h = 10 µm (dashed lines). 
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