
Constrained Scale-Free LDPC Codes

Xia Zheng†, Francis C.M. Lau†, Yejun He‡ and Chi K. Tse†

†Department of Electronic and Information Engg., Hong Kong Polytechnic University, Hong Kong
‡College of Information Engineering, Shenzhen University, Shenzhen

Email: †{xia.zheng,encmlau,encktse}@polyu.edu.hk; ‡yjhe@szu.edu.cn

Abstract—Short-length scale-free low-density-parity-
check (SF-LDPC) codes have been found to outperform
codes optimized by the density-evolution technique. How-
ever, a large fraction of degree-2 variable nodes will exist in
SF-LDPC codes when the code rate is high. Consequently,
small-size cycles with no external connections can easily
be created by these degree-2 nodes, producing a large error
rate. In this paper, we propose constraining the proportion
of degree-2 variable nodes in the design SF-LDPC codes.
We will evaluate the error performance of the high-rate SF-
LDPC codes under the new constraint.

1. Introduction

Low-density-partiy-check (LDPC) codes are well-
known for their superb error-correction capability. More-
over, LDPC codes optimized by the density-evolution (DE)
technique have been widely studied [1, 2]. Recently, we
have applied complex-network theories to the design of
LDPC codes. Inspired by the shortest-average-path-length
property of scale-free networks, we have proposed scale-
free LDPC (SF-LDPC) codes in which the variable-node
degrees follow power-law distributions [3, 4]. We have also
constructed several short-length SF-LDPC codes with code
rate 0.5 and have evaluated their performance. The results
have shown that short-length SF-LDPC codes outperform
other DE-optimized codes in terms of block/bit error rates
and convergence time.

Yet, when the code rate is higher, say 0.75, there will
be a large proportion of degree-2 variable nodes existing
in the SF-LDPC codes. Under such circumstances, there
is a high chance that short cycles, with no externally-
connected check nodes, will be formed by the degree-2
variable nodes. Consider the short cycle in Fig. 1. In the
iterative decoding process, the information generated by
each variable node will spread to all other variable nodes
via the check nodes. Suppose an all-zero codeword is sent
by the transmitter. When most, even if not all, of the vari-
able nodes in the cycle in Fig. 1 are erroneous (decoded
as “1”), the (erroneous) message starting from any of the
variable nodes will be enhanced as it passes through each
of the erroneous variable nodes in the cycle. After a num-
ber of iterations (equal to the number of variable nodes in
the cycle), the enhanced message will return to the same
variable node, further reinforcing the incorrect belief of the
variable node. The end result is that all variable nodes in

Figure 1: A short cycle formed by degree-2 nodes and with-
out any externally-connected check nodes. Filled circles
and filled squares represent, respectively, variables nodes
and check nodes. A solid line represents a direct connec-
tion between a variable node and a check node. A dash line
represents that there is a path between the check node and
variable node.

the cycle will become erroneous. Moreover, if all the vari-
able nodes residing outside the cycle have been decoded
correctly as bits “0”, all the check nodes will become satis-
fied and the decoder converges — to an incorrect codeword
though. In consequence, such a short cycle is very likely to
give rise to errors, even at the high SNR region [5, 6].

In this paper, we will overcome the aforementioned issue
by introducing a new constraint on SF-LDPC codes. We
will impose an upper bound on the proportion of degree-
2 variable nodes in the SF-LDPC codes. In Sect. 2, we
briefly review the construction method of SF-LDPC codes
and in Sect 3, we will introduce the proposed “constrained
SF-LDPC (CSF-LDPC) codes”. Finally, we will present
the performance of the CSF-LDPC codes in Sect. 4.

2. Review of scale-free LDPC codes

Low-density-parity-check codes are in fact linear block
codes [7] which can be represented by bipartite graphs con-
sisting of two sets of nodes, namely variable nodes and
check nodes. The variable nodes represent the elements
of the codeword and the check nodes represent the sets of
parity-check constraints satisfied by the codewords of the
code. The block length of the code, denoted by N, is the
number of variable nodes; while the check length of the
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code, denoted by M, is the number of check nodes. The
connections between the two different types of nodes are
called edges. The number of edges emanated from a node
is referred to as the degree of the node.

Given a distribution pair (λ, ρ) of an LDPC ensemble,

λ(x) :=
dv∑

k=2

λk xk−1 and ρ(x) :=
dc∑

k=2

ρk xk−1 (1)

specify the variable-node degree distribution and the
check-node degree distribution, respectively, where λk de-
notes the fraction of edges connected to degree-k variable
nodes and ρk denotes the fraction of edges connected to
degree-k check nodes. Moreover, dv and dc denote the max-
imum variable-node degree and maximum check-node de-
gree, respectively.

In the following, we review the main steps in construct-
ing a SF-LDPC code. For details, please refer to [4].

1. Denote the probability that a variable node has k con-
nections by Prλ(k).

2. Assign the fraction of variable nodes with degree k
according to a power-law function, i.e., Prλ(k) ∝ k−γ,
where γ is the characteristic exponent.

3. Since
∑

k Prλ(k) = 1, the fraction of edges connecting
to variable nodes with degree k equals λk =

k1−γ
∑dv

i=2 i1−γ
.

4. Variable-node degree distribution in (1) is re-written
as λ(x) =

∑dv

k=2
k1−γ
∑dv

i=2 i1−γ
xk−1.

5. Average variable-node degree equals < kv >=∑dv
k=2 k1−γ
∑dv

i=2 i−γ
.

6. Probability that a check node has k ∈ {dc − 2, dc −
1, dc} connections follows a Poisson distribution with
parameter ν, i.e., Prρ(k) = ν

k exp(−ν)
k! .

7. Fraction of edges connecting to check nodes with de-

gree k ∈ {dc − 2, dc − 1, dc} equals ρk =
νk exp(−ν)

(k−1)!
∑dc

j=dc−2
ν j exp(−ν)

( j−1)!

.

8. Check-node degree distribution in (1) becomes

ρ(x) =
dc∑

k=dc−2

νk exp(−ν)
(k−1)!

∑dc

j=dc−2
ν j exp(−ν)

( j−1)!

xk−1. (2)

9. Combining the above results gives, for a code rate R,

< kv >

1 − R
=

(dc − 2)(dc − 1)dc + (dc − 1)dcν + dcν
2

(dc − 1)dc + dcν + ν2
.

(3)

10. Since dc is an integer greater than 2, we have dc −
2 < <kv>

1−R < dc and dc =
⌈
<kv>
1−R

⌉
,
⌈
<kv>
1−R

⌉
+ 1 where �x�

denotes the smallest integer larger than or equal to x.

11. Once dc is selected, the corresponding ν is found using
(3).

3. Constrained SF-LDPC codes

When LDPC codes are randomly constructed, there is
a high probability that small cycles, say cycles of length
less than 10, consisting of only degree-2 variable nodes are
formed. These small-size cycles are creating decoding er-
rors even at the high SNR region. There are effective code
construction algorithms, such as progressive edge growth
(PEG) [8], that can maximize the length of possible cy-
cles involving only degree-2 variable nodes. However, if
the number of degree-2 variable nodes, denoted by Nv2 is
far larger than the check length M, the excess number of
degree-2 nodes over the check length, i.e., Nv2 −M degree-
2 variable nodes, will produce small-size cycles, giving rise
to a high error rate. Therefore, in practice, the fraction of
degree-2 variable nodes in any optimized degree distribu-
tions should not greatly exceed M

N = 1−R. To overcome the
aforementioned problem, an additional constraint has been
proposed when the fraction of DE-optimized degree-2 vari-
able nodes is far larger than 1 − R [9, 10]. The DE mecha-
nism that has incorporated the degree-2 variable-node con-
straint is called “constrained DE”, and the corresponding
degree distribution obtained is called “constrained degree
distribution”.

Applying the above concept to the SF-LDPC codes, we
can form “constrained SF-LDPC” codes. Denote the frac-
tion of degree-2 variable nodes by Fr(2) = Nv2

N . For con-
strained SF-LDPC codes with a maximum variable-node
degree of dv, the variable-node degree distribution will be
given as

λk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2Fr(2)

2Fr(2) +
∑dv

i=3 i1−γ(1−Fr (2))
∑dv

i=3 i1−γ

if k = 2

k1−γ(1 − Fr(2))

2Fr(2) +
∑dv

i=3 i1−γ(1−Fr (2))
∑dv

i=3 i1−γ

otherwise.
(4)

Using the same method as described in Sect. 2, the opti-
mized check-node degree distribution, ν, dc and < kv > can
be readily found.

4. Results and Discussions

In this section, we present the analytical performance
and the simulated results for the constrained SF-LDPC
(CSF-LDPC) codes. We assume an AWGN channel and
a code rate of 0.75.

4.1. Achievable Threshold

Assuming a rate-0.75 code, we use the algorithm in
Sect. 2 to attempt optimizing the degree distributions for
the SF-LDPC codes. However, the proportional of degree-
2 variable nodes obtained, i.e., Fr(2), is far larger than
1−R = 0.25 and is therefore not acceptable. Hence, we re-
sort to constructing rate-0.75 constrained SF-LDPC codes.
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Table 1: Comparison of the threshold value and the aver-
age number of connections between constrained SF-LDPC
codes and other LDPC codes. Code rate R equals 0.75.
The letters in the code name denote the type of code, in-
cluding DE, constrained DE (abbreviated by “CDE”) , and
constrained SF-LDPC (abbreviated by “CSF”). The digits
in the code name denote the maximum variable-node de-
gree of the code.

Code Name dv Fr(2) σ∗ < kv > dc γ

DE14 14 0.446 0.664 4.526 20 /

CDE12 12 0.250 0.663 4.000 16 /

CSF12 12 0.278 0.647 3.974 17 2.38

CSF20 20 0.280 0.651 4.005 17 2.80

CSF28 28 0.294 0.653 4.054 17 2.90

In addition, to ensure an easy implementation of the en-
coder, Fr(2) is set equal to or slightly larger than 1 − R [9].

We begin with Fr(2) = 1 − R, and increase it with a step
size of 0.001 until 1 − R + 0.05 is reached. For each value
of Fr(2), the largest achievable thresholdσ∗1 and the corre-
sponding constrained degree distributions of the SF-LDPC
code are recorded. Among all the results, the largest thresh-
old and the corresponding optimized, constrained degree
distributions of the CSF-LDPC code is then selected. Ta-
ble 1 presents the highest thresholds achieved by rate-0.75
CSF-LDPC codes as well as other LDPC codes. The cor-
responding parameters used are also tabulated. The results
indicate that the “pure” DE produces a slightly larger σ∗
compared with other LDPC codes. However, “pure” DE
also produces the fraction of degree-2 variable nodes al-
most two times of (1−R), i.e., Fr(2) ≈ 2(1−R). We also ob-
serve that constrained DE and constrained SF-LDPC pro-
duce very similar σ∗ and < kv >.

4.2. Simulated Performance

Further, three codes of rate-0.75 are constructed us-
ing the progressive-edge-growth (PEG) method, which has
been shown to produce codes with both large girth and
large Hamming distance [8]. The first one has a DE-
optimized variable-node degree distribution given by

λ1(x) = 0.1970x + 0.0801x2 + 0.2410x3 + 0.0082x4 + 0.4736x13,

(5)
and the second one possesses a constrained DE-optimized
variable-node degree distribution given by [12, 9]

λ2(x) = 0.1250x+ 0.4460x2+ 0.4078x10+ 0.0213x11. (6)

They are abbreviated as “DE14” and “CDE12”, respec-
tively. The third one is a CSF-LDPC code with a maximum

1σ∗ can be regarded as the maximum noise standard deviation below
which error-free communication can always be achieved. To evaluate the
threshold value, “density evolution (DE)” is used [1, 2, 11].
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Figure 2: BER and BLER performance of three different
LDPC codes — “DE14”, “CDE12”and “CSF20”. Code
lengths are 2016 and the code rate is 0.75.

variable-node degree of 20 and is denoted by “CSF20”. De-
tails of the aforementioned three codes are listed in Table 1.
Moreover, the lengths of the three types of codes are set to
2016.

Figure 2 plots the simulated bit/block error rates
(BERs/BLERs) for the three rate-0.75 codes. The perfor-
mance curves show that the constrained SF-LDPC code
“CSF20” suffers slight degradation of BER and BLER per-
formance compared with “DE14” and “CDE12” at low
SNR, but outperform them at higher SNR values.

For a given code, define the average path length (APL)
of the corresponding bipartite graph as the path length be-
tween any two variable nodes averaged over the whole bi-
partite graph. Consider codes with the same code length
and the same average variable node degree. The code
graphs with smaller APLs are more efficient in spreading
information than those with large APLs. Similarly, un-
der same code length and the same APL, code graphs with
smaller average variable-node degree can be regarded as
less complex. To measure the merit of a given code, we de-
fine the average-path-length-variable-node-degree-product
(APVP) of a code as the product of the average path length
of the bipartite graph and the average variable-node degree
of the code. In general, codes with smaller APVPs are
preferred. The APLs and the APVPs of the three types
of codes are listed in Table 2. It is observed that even
under the constraint in the fraction of degree-2 variable
nodes, “CSF20” and “CDE12” have similar APVPs and
have lower APVPs compared with “DE14”.

To further compare the performance of the codes, we de-
fine the metric “average convergence time”, denoted by tc,
as the product of the average number of iterations to con-
verge (Ī) and the average variable-node degree (< kv >).
In general, the smaller the “average convergence time”, the
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Table 3: Comparison of the average convergence times for rate-0.75 codes at high SNR values.

SNR/Code length 5.0 dB/2016 4.8 dB/2016 4.6 dB/2016

Code type DE14/CDE12/CSF20 DE14/CDE12/CSF20 DE14/CDE12/CSF20

< kv > 4.53/4.00/4.01 4.53/4.00/4.01 4.53/4.00/4.01

Ī 5.94/5.69/5.57 6.88/6.63/6.48 8.20/7.97/7.85

tc = Ī× < kv > 26.91/22.76/22.34 31.17/26.52/25.98 37.15/31.88/31.48

Normalized tc 1.20/1.02/1.00 1.20/1.02/1.00 1.18/1.01/1.00

Table 2: Comparison of APVPs of several rate-0.75 codes.

Code < kv > APL APVP

DE14-2016 4.526 2.059 9.319

CDE12-2016 4.000 2.161 8.644

CSF20-2016 4.005 2.154 8.627

less time the decoder takes to decode a codeword. The re-
sults in Table 3 indicates that “CDE12” and “CSF20” have
almost identical “average convergence time” (tc) while
“DE14” requires, on average, 20% more time (resources) to
decode a codeword. The results are consistent with the fact
that “CSF20” and “CDE12” have similar APVPs and have
smaller APVPs than “DE14”. In addition, the table indi-
cates that “CSF20” requires, on average, a slightly smaller
number of iterations for decoding compared with the DE-
optimized and constrained DE-optimized codes.

5. Conclusions

In this paper, we have proposed a new constraint on the
design of scale-free LDPC (SF-LDPC) codes. The con-
straint limits the proportional of variable nodes with de-
gree 2, and is applicable to the design of high rate codes.
Using rate-0.75 codes as an example, we have illustrated
that compared with DE-optimized and constrained DE-
optimized codes, the constrained SF-LDPC (CSF-LDPC)
code can accomplish very similar achievable error perfor-
mance (threshold), lower bit/block error rate at the high
SNR region and require a smaller number of iterations for
convergence.
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