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Abstract—This paper presents a visualisation technique
that facilitates the analysis of the discontinuity induced be-
haviour that appears in piecewise-smooth electronic oscil-
lators. In this work, an electrostatic vibration energy har-
vester is the system used to present the new technique.

1. Introduction

In this work we present a technique which aids in the
analysis of discontinuity induced behaviour in piecewise-
smooth electronic oscillators. The developed technique is
used to examine the dynamics of a particular type of piece-
wise smooth oscillator, namely an electrostatic vibration
energy harvester (eVEH). An eVEH is a device that gen-
erates electrical energy from ambient vibrations in its sur-
rounding environment by employing a high-quality micro-
resonator (linear or nonlinear) and conditioning electron-
ics, coupled together through a variable capacitor (the
transducer).

It was shown in [1] that this system displays both reg-
ular and irregular behaviour, and it was later confirmed in
[2, 3, 4] that both classical nonlinear phenomena and slid-
ing phenomena were present in the system. This nonlin-
ear behaviour appears due to the eVEH being a mixed sys-
tem i.e. the electro-mechanical coupling of the transducer,
along with the switched nature of the conditioning electron-
ics. The switching of the conditioning electronics causes a
discontinuity in the vector field describing the system. This
explains the appearance of sliding behaviour in the system,
an analysis of which can be found in [4]. Sliding behaviour
can be particularly detrimental to the performance of an
eVEH. This is because the system’s switches operate upon
the detection of local extrema of a varying capacitance.
When sliding occurs, many local maxima and minima of
this capacitance also occur, causing many switching events.

In [3] and [4], bifurcation diagrams were presented that
allowed one to get an overview of the whole system dy-
namics of an eVEH. It was apparent from these plots that
sliding motion was very much present in the system. The
particularities of this sliding behaviour however could not
be determined from a bifurcation diagram alone. The moti-
vation behind this paper is to develop a visualisation tool
based upon a traditional bifurcation diagram which also
highlights the discontinuity induced behaviour present in
a piecewise-smooth system like an eVEH. This technique
can be extended to any electronic oscillator that displays
such sliding phenomena.

2. Statement of the Problem

The piecewise-smooth electronic oscillator used in this
work to present our analysis technique, models an eVEH
and is shown in Fig. 1. It consists of a high-Q linear or
nonlinear resonator, a variable capacitor (transducer) and
a conditioning circuit that implements the constant-charge
energy conversion cycle [5]. Ambient vibrations of the en-
vironment in which the eVEH is situated cause the trans-
ducer to oscillate since it is attached to a high-Q linear or
nonlinear resonator. This oscillation causes the capacitance
of the variable capacitor Ctran(t) to vary with time. The con-
ditioning circuitry discharges Ctran to zero at a local mini-
mum of the capacitance and charges Ctran to a charge Q0 at
a local maximum. This is done by fixing an energy W0 on
the capacitor at every local maximum. The mechanical-to-
electrical energy conversion occurs whilst the transducer
capacitance decreases from a local maximum to a local
minimum by keeping the charge constant thus increasing
the voltage between the plates.

By introducing both a variable vector x = (x1, x2, x3),
where x1 represents the normalised displacement, x2 the
normalised velocity and x3 dimensionless time, and a vec-
tor representing the system parameters P = (β, α,Ω, νW),
the system dynamics of an eVEH can be described by

ẋ =

{
F1(x,P), H(x) > 0
F2(x,P), H(x) < 0 (1)

where

Ctran

SW1 SW2

Maximum of Ctran Minimum of Ctran

Rload

V0 = 2W0 /C max

Figure 1: Schematic of the electronic oscillator which mod-
els a vibration electrostatic energy harvester.
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F1(x,P) = F2(x,P) +


0
νW

1−x1,max

0

 (2)

and

F2(x,P) =


x2

−2βx2 − x1 −
N∑

n=2
κnxn

1 + α cos Ωx3

1

(3)

This general system (1) can be used to describe an eVEH
whether it is operated with a linear or nonlinear resonator.
In (1), x1 = x/d, β = b/(2mω0), κn = kndn−1

mω2
0

, α =

Aext/(dω2
0), νW = W0/(d2mω2

0), Ω = ωext/ω0 = 1+σ (σ is a
possible small mismatch between the two frequencies) and
x3 = ω0t. These are all derived from the dimensional pa-
rameters describing the system: displacement x, the trans-
ducer gap at rest d, the damping factor b, resonator mass
m, the natural frequency of the resonator ω0 =

√
k1/m (k1

is the linear spring constant), the mechanical nonlinearity
coefficients of a nonlinear resonator kn(n ≥ 2), the energy
fixed on the transducer W0, the acceleration Aext and fre-
quency ωext of the ambient vibrations, and time t. It is clear
to see from (1) that a discontinuity exists in the system. The
boundary between the two vector fields governing the sys-
tem is referred to as the switching surface Σ. The scalar
function H(x) that defines Σ is given by the switching con-
dition H(x) = −x2 = 0. A more detailed description of the
mathematical model and operation of this system can be
found in [2]. General system parameters used throughout
this paper can be seen in Table 1.

Table 1: General parameter values and ranges of the studied
eVEH used throughout this paper (unless stated otherwise).

System Parameters
m 200 · 10−6 kg
b 1.5 · 10−3 Nsm−1

k1 300 Nm−1

d 20·10−6 m
C0 44.25 ·10−12 F
σ 0.03

3. Visualisation of Discontinuity Induced Bifurcations

3.1. Bifurcation Diagrams

Bifurcation diagrams like the one seen in Fig. 2 for an
eVEH were presented in [3] and [4]. In the particular in-
stance of Fig. 2, the acceleration of the external vibrations
being harnessed, Aext, is varied as all other parameters are
held constant. For each point the initial conditions are
taken to be x1 = 0 and x2 = 0, and (1) is evaluated for 1500
units of dimensionless time x3. Any local maxima that oc-
cur between x3 = 1200 and x3 = 1500 are plotted. The first
1200 units of x3 are neglected to ensure that the transient
process has passed. It is clear that the bifurcation diagram

displays classical nonlinear behaviour e.g. cascades of dou-
bling bifurcations and intermittency. What is not as easily
explained is the appearance of these lower branches in the
figure at Aext < 2ms−2 and at Aext > 7ms−2. In [4] it was
noted that this phenomena is actually discontinuity induced
behaviour i.e. sliding motion. This sliding motion appears
in a bifurcation diagram because it contains many maxima,
since a trajectory undergoing sliding continuously switches
between the two subspaces of the system F1 and F2.

3.2. Discontinuity Induced Behaviour

Sliding motion or discontinuity induced behaviour can
occur in piecewise smooth systems like an eVEH when a
trajectory intersects the switching surface Σ through par-
ticular regions on the switching manifold known as ‘slid-
ing regions’ [6]. Since F1 describes the flow of system (1)
when H(x) > 0 and F2 describes the flow when H(x) < 0
then we can construct Fs, a specific vector field that gov-
erns the flow inside the switching region when H(x) = 0,
using Utkins equivalent control method [7].

Fs =
F1 + F2

2
+ ρ(x)

F2 − F1

2
(4)

where |ρ| ≤ 1. The normal vector nT = [∇H(x)]T =

(0,−1, 0) is directed towards the subspace governed by the
vector field F1. Using the notation 〈a,b〉 to denote the inner
product of two vectors, the function ρ(x) can be obtained
by considering that Fs must be tangential to the switching
manifold Σ, which means that

〈
nT,Fs

〉
= 0. Thus we obtain

that

ρ(x) =

〈
nT,F1

〉
+

〈
nT,F2

〉
〈
nT,F1

〉
−

〈
nT,F2

〉 (5)

The boundaries of the sliding regions are defined by the
corresponding conditions

Σ̂+ = {x ∈ Σ/ρ(x) = +1} (6)

and
Σ̂− = {x ∈ Σ/ρ(x) = −1} (7)
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Figure 2: Bifurcation diagram for an eVEH operated with a
linear resonator. Local maxima of displacement are plotted
as Aext varies while W0 is fixed at 10 nJ.
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These expressions (6) and (7) are used to determine
the sliding regions of an eVEH since a sliding region is
bounded by Σ̂+ and Σ̂−. Evaluating (6) and (7) for an eVEH
operating in constant-charge mode we obtain the following
expressions for the Σ̂+ and Σ̂− boundaries

Σ̂+ : x1 +

N∑
n=2

κn xn
1 − α cos Ωx3 = 0 (8)

and

Σ̂− : x1 +

N∑
n=2

κn xn
1 − α cos Ωx3 −

νW

1 − x1
= 0 (9)

The expressions (8) and (9) define the boundaries of the
sliding regions on the switching surface H(x) = 0. If a tra-
jectory crosses the switching surface through one of these
sliding regions then sliding motion will occur. The trajec-
tory will cross Σ transversely until it hits one of the bound-
aries of the sliding region. These sliding region bound-
aries (8) and (9) change and evolve depending upon system
parameter values and thus the sliding regions themselves
evolve [4].

3.3. Sliding Bifurcation Diagrams

The simulations that were used to find the results in
Fig. 2 were repeated but this time the values for x3 corre-
sponding to each detection of a maximum of displacement
were also recorded. Using these times in conjunction with
(8) and (9) it can be determined whether a particular seg-
ment of a trajectory contains sliding motion or not, and if
so, then by which boundary Σ̂+ or Σ̂−, this segment leaves
the sliding region.

In Fig. 3 (a) one can see the results of this process for
an eVEH operated with a linear resonator and W0 = 10nJ.
With this visualisation tool, the blue dots correspond to
local maxima from a segment of a trajectory that crosses
the discontinuity boundary outside the sliding regions. The
pink and green points correspond to local maxima that ap-
pear due to sliding. The green points indicate that the
sliding segment of the trajectory leaves the sliding region
through the Σ̂+ boundary and the pink points indicate that
the sliding segment of the trajectory leaves the sliding re-
gion through the Σ̂− boundary. These mappings can also be
written as

D =

{
(x1, x2, x3) ∈ R3/H(x) = 0,

dx2

dx3
< 0

}
(10)

D+
Σ =

{
(x1, x2, x3) ∈ R3/ρ(x) = +1

}
(11)

D−Σ =
{
(x1, x2, x3) ∈ R3/ρ(x) = −1

}
(12)

where (10) corresponds to the blue points, (11) to the green
points and (12) to the pink points.

Comparing Fig. 2 and Fig. 3 (a) it is clear that it is now
much easier to quickly determine where the sliding mo-
tion appears in the system. Sliding motion appears and dis-
appears in a system by discontinuity induced bifurcations
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Figure 3: Sliding bifurcation diagram. (a): W0 = 10nJ,
linear resonator. (b): Magnified section of (a), omitting
non-sliding points.
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Figure 4: Effect of adding-sliding bifurcation on phase
of system. (a) Aext = 7.0163ms−2: 10T-orbit. (b)
Aext = 7.0164ms−2: 5T-orbit. Note the disappearance of
a loop due to the adding-sliding bifurcation.

(sliding bifurcations) [6]. These sliding bifurcations are so
called since they cause a qualitative change in a system’s
orbit. The visualisation technique presented here aids us in
determining firstly, when these sliding bifurcations occur
in a system and secondly, what types of sliding bifurcations
occur. It was shown in [4] that there are two types of sliding
bifurcations that can occur in an eVEH: a crossing-sliding
bifurcation and an adding-sliding bifurcation.

Looking at Fig. 3 (a) we can see that the sliding that is
present at low values of Aext completely disappears from
Aext = 1.78ms−2 to Aext = 1.79ms−2. This happens due to
a crossing-sliding bifurcation. Some of the sliding motion
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that exists at higher values of Aext can be seen in more de-
tail in Fig. 3 (b) where the points mapped by (10) have been
omitted to ease the analysis of the sliding regimes. Two
adding-sliding bifurcations are marked on the figure. The
first occurs at Aext ≈ 7.01635ms−2. One can observe how
the green points representing contact with the Σ̂+ bound-
ary disappear, and all that remains is a single pink point.
This adding-sliding bifurcation creates a window of peri-
odicity with a segment of sliding motion. This window
disappears again via another adding-sliding bifurcation at
Aext ≈ 7.01765ms−2. The effect that an adding-sliding can
have on the phase of this system can be seen in Fig. 4. In
Fig. 4 (a) one can see a 10T-orbit before the adding-sliding
bifurcation and in Fig. 4 (b) a 5T-orbit (a loop of which has
disappeared) after the adding-sliding bifurcation.

Fig. 5 (a) shows the dynamics of an eVEH, operated with
a nonlinear resonator (κ3 = 0.3) and W0 fixed at 20 nJ , plot-
ted using this new visualisation technique. Again, through
the colour coding, one can easily observe at which values
of Aext sliding does, and does not, occur. A crossing-sliding
bifurcation similar to the one discussed previously occurs
between Aext = 4.05ms−2 to Aext = 4.06ms−2. By zoom-
ing in on the system’s dynamics at higher values of Aext
in Fig. 5 (b), it can be seen how the green points ’collide’
with the pink points at Aext = 10.092ms−2. This results in
a disappearance of the green points. This discontinuity in-
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Figure 5: Sliding bifurcation diagram. (a): W0 = 20nJ,
nonlinear resonator (κ3 = 0.3). (b): Magnified section of
(a), omitting non-sliding points.

duced behaviour is once again caused by an adding-sliding
bifurcation.

4. Conclusions

Discontinuity induced behaviour is a characteristic of
piecewise-smooth electronic oscillators. In this work we
have presented a visualisation tool that highlights where
this discontinuity induced behaviour occurs in a system’s
dynamics and at the same time facilitates in determining
what type of discontinuity induced bifurcation causes this
sliding motion to appear or disappear. An electrostatic vi-
bration energy harvester was the system used to present the
visualisation technique in this work but the technique can
be used to analyse any piecewise-smooth oscillator.
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