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Abstract— Distributed decision making is an intrinsic ingredi-
ent of ad-hoc and self-organized wireless networks. For a special
type of distributed algorithms, called consensus algorithms, the
convergence properties are explored here for a keyhole geometry
when the nodes communicate over a wireless channel. The
behaviour of the algorithm is analysed from both a graph-
theoretic perspective and its application to time-offset estimation
for different time-varying conditions of the wireless channel
depending on the channel coherence time. Two convergence
regimes are identified which depend on the keyhole size. The
bottleneck effect induced by the keyhole geometry is significant
and hence requires geometry-aware modifications to conventional
consensus algorithms. These findings could suggest new directions
for improved versions of the consensus algorithms for wireless
networks.

Index Terms—Consensus algorithms, cooperative control,
graph Laplacian, time synchronization, keyhole effect, bottleneck.

I. INTRODUCTION

A consensus problem for a network of agents can be defined
through an exchange of information among the agents with
a goal of achieving an agreement about several common
quantities of interest [1]. This definition suggests that studying
such problems under the framework of wireless communica-
tion networks could potentially have significant practical and
theoretical importance. The technologies which could benefit
include ad-hoc and sensor networks or any network when there
is a need for decentralized decision making. The tasks that
such networks perform can be related to distributed estimation,
data fusion and formation stabilization and control [2].

The consensus problems have been extensively studied
in past decades within different research communities [3]
(statistics, computer science, biology and control theory),
however a new class of problems emerged inspired by a
rapid development and application of wireless communication
networks in recent years. The impact of wireless channel
on consensus problems is considerable since, on one hand,
it gives more freedom to the network nodes in terms of
mobility and broadcast nature of the channel, but, on the
other hand, it introduces possibly severe constraints in the
view of a time-varying fading channel and interference. The
wireless channel could adversely influence the connectivity
of the network which could lead to a poor performance of
consensus algorithms.

One application of consensus problems and algorithms is
for synchronization of nodes in wireless networks. The nodes

can synchronize in time, frequency and phase. One reason for
this could be that the nodes would like to employ cooperative
communication schemes to transmit the information [4], [5],
which typically improve network capacity and reliability. The
lack of synchronization, however, can completely compromise
the performance of cooperative schemes. To tackle the problem
of synchronization for cooperative communications, [2] and
[6] developed a wireless network synchronization method
based on consensus algorithms. The goals of the synchroniza-
tion based on consensus algorithms are: 1) To improve the
reliability of the wireless networks and 2) To make the wireless
networks more autonomous. It should be noted that other
methods, such as master-slave [2], can be used for network
node synchronization, but they might lack robustness in harsh
wireless environment.

The aim of this paper is to further explore consensus
algorithms for wireless networks residing in different propaga-
tion environment/geometries which can correspond to different
indoor/outdoor conditions. To the best of our knowledge,
this is the first paper to study the consensus problems and
algorithms subject to a geometry constraint. One elementary
geometry which is of both practical and theoretical interest is
a keyhole geometry. For this geometry, we first quantify the
performance of a general consensus algorithm statistically, and
then focus on a special example of the consensus algorithm, for
the wireless network node synchronization. Our contributions
are:

• The statistical properties of the algorithm convergence
rate λ2 and convergence coefficient C as a function of
the keyhole opening ε are described.

• Two convergence regimes of the algorithm whose oc-
currence depends on the size of keyhole opening ε are
identified.

• The effect of the wireless channel coherence time Tc on
the synchronization convergence rate is discussed.

• The existence of two different convergence regimes are
confirmed for the synchronization algorithm, where for a
large ε, the convergence is quick corresponding to the first
convergence regime, while for a small ε the convergence
is slower (the second regime) which is asymptotically
described by λ2.

The parameter λ2 is the second smallest eigenvalue of the
graph Laplacian matrix which will be defined shortly.



II. NETWORK DEFINITIONS AND SYSTEM MODEL

A. Stochastic Node Locations

We model an ad hoc mesh network topology as a two
dimensional stationary Binomial point process (BPP) Φ with
intensity function ρ in a unit square domain V such that
the total number of points is equal to N = ρ. Each point
in Φ represents a wireless transceiver node with identical
characteristics and equal transmit power P . Let dij ≥ 0
represent the Euclidean distance from node i to node j.

B. Path-loss and Fading

The signal-to-noise ratio (SNR) is a commonly used metric
to quantify the quality of a communication link. This value is
strongly dependent on path loss which decays with distance
such that SNRij ∝ d−ηij , where η is the path loss exponent
and is usually greater than or equal to 2. We therefore adopt
a simple path loss function

g(dij) =
1

1 + dηij
, η ≥ 2, (1)

which is non-singular always less than 1.
In addition to the path loss attenuation, small-scale fading

also affects the received signal power. Rayleigh fading is a
typical small-scale fading model adopted by the majority of
the scientific community. We also adopt this approach here
and model the channel gain between node i and node j by
|hij |2. Without loss of generality we therefore have that |hij |2
is an exponentially distributed random variable of mean one.
Note that while we assume a reciprocal channel (i.e. |hij |2 =
|hji|2), we will ignore any spatial channel correlations hence
making |hij |2 statistically independent of |hkj |2 for i 6= k. We
will not consider the effects of shadowing in this contribution.

C. The Bottleneck

Much of the literature to date has looked at various graph
topologies including: path, cycle, star, mesh, and complete
graphs. Clear conclusions have been drawn as summarized
in [3]. In this paper we will study ad hoc networks which
form a mesh topology but are also constrained by a bottleneck,
induced here by the physical presence of a keyhole of size ε
in the square domain V . A schematic of such a bottleneck
is shown in Fig. 1 and abstractly represents an impenetrable
wall with a small keyhole opening. For example, this opening
could be a crack in the wall, a window or a door, or even a
large canyon. The exact size of the keyhole is relative to the
frequency and power of transmission P . Hence the abstracted
scenario studied herein is fairly generic.

The immediate effect of this keyhole opening, is that it
introduces a line-of-sight (LoS) condition on all point-to-point
links which we represent here by χij(ε) which equals to
1 if LoS exists between nodes i and j, and 0 otherwise.
Consequently, we define SNR by

SNRij =
χij(ε)|hij |2P
(1 + dηij)N

, η ≥ 2, (2)

Fig. 1. On the left, schematic of a keyhole setup with opening ε and an
example realization of an ad hoc mesh network of N = 40 nodes is given.
On the right, we plot the norm of difference vector ‖∆(n)‖ (see (10)) as a
function of n for this particular network realisation on a semi-log scale.

where N is the average background noise power. The connec-
tivity properties of such a setup have been studied for the first
time in [7]. In this paper we will be interested in the effects of
ε ≥ 0 towards the distributed time synchronization of wireless
networks.

D. Weighted Adjacency and Laplace Matrix

In graph theory, the adjacency matrix A is an N × N
matrix used to represent the links composing a finite graph (or
network). Typically the entries aij of A are either 1 if a link
exists and 0 otherwise. In view of the above definitions, this
paper will consider the weighted equivalent of the adjacency
matrix defined with respect to the SNRij as given in (2) and
some threshold θ ≥ 0

aij =

{
SNRij if SNRij ≥ θ and i 6= j

0 otherwise
. (3)

Note that A is therefore symmetric and has zero diagonal.
Fig. 1 shows a realization of a network with N = 30 nodes.
Note that the links connecting the nodes strongly depend on
the value of θ, with large θ able to disconnect the network
into 2 or more clusters. The corresponding Laplacian matrix
L can be derived from A and has entries lij given by

lij =

{
1 if i = j

− aij∑N
j=1 aij

otherwise . (4)

Note that L is therefore not symmetric and I − L is a right
stochastic matrix i.e. has row sum equal to 1. More impor-
tantly, the real eigenvalues of L can be ordered sequentially
in ascending order as

0 = λ1 ≤ λ2 ≤ . . . ≤ λN−1 ≤ λN . (5)

Significantly, it is well known that for a fully connected
graph1 i.e. one composed of a single connected cluster of
nodes the second smallest eigenvalue of L also referred to
as the algebraic connectivity of the graph is larger than zero
λ2 > 0 (i.e. the zero eigenvalue is isolated) [1]. Moreover, λ2
is perhaps the only known measure of the performance/speed

1Termed connected graph in some literature.



of distributed consensus and synchronization algorithms. The
asymptotic consensus convergence is shown on the right panel
in Fig. 1 and is described in more detail in the following
section.

III. BASIC CONSENSUS ALGORITHM

We briefly outline the basic construct of a linear consensus
algorithm and state some known results. Consider a network
of N devices as defined in previous section, where each node
is associated to some local state given by xi ∈ R which it
would like to synchronize via a local communication with its
immediate network neighbourhood. One way of achieving this
is by taking an average of the difference between its own state
and that of its neighbours and adjusting its initial state propor-
tionately. Iterating this algorithm many times is under certain
conditions [3] guaranteed to result in a converged equilibrium
state where all nodes in the network share the same state.
Mathematically, the state space of the network at iteration
n ∈ N is defined by x(n) = {x1(n), x2(n), . . . , xN (n)} and
is updated according to

xi(n+ 1) = xi(n) +
δt∑N
j=1aij

N∑
j=1

aij(xj(n)− xi(n)) (6)

where 0 < δt � 1 is the incremental time step size, and the
sum over the differences is normalized and weighted by the
SNRij of each link. Of course there are many other ways of
defining a consensus algorithm, however what is particularly
nice in this instance is that after some manipulations (6) can
be re-expressed in matrix form

x(n+ 1) = Px(n) (7)

with P = I− δtL, also referred to as the Perron matrix with
real eigenvalues satisfying [3]

0 ≤ µ1 ≤ µ2 ≤ . . . ≤ µN−1 ≤ µN = 1. (8)

It is then a well known result that a consensus is asymptotically
reached xi(n) → x∗ as n → ∞ for all i ∈ [1, N ] if λ2 > 0
and δt is sufficiently small [1]. In fact the consensus value x∗

is given by

x∗ = w · x(0) (9)

where w is the dominant left eigenvector of P (or right
eigenvector of PT) normalized with respect to the 1-norm,
i.e. ‖w‖1= 1. Moreover, the convergence towards x∗ is
exponentially fast with n, with a rate proportional to λ2. To
see this, we define a difference vector ∆(n) = x(n) − x∗ at
iteration step n such that

∆(n) = Pn(x(0)− x∗) = Pn∆(0) = (I− δtL)n∆(0)

≈ e−nδtL∆(0)
(10)

since Px∗ = x∗ and since (1− y)n ≈ e−ny for large enough
n. Another way of seeing the exponential convergence to x∗

is by calculating the norm on either side of (10) from which
we get the following upper bound

‖∆(n)‖ =‖Pn∆(0)‖
≤ µnN−1 ‖∆(0)‖
≈ e−nδtλ2 ‖∆(0)‖

(11)

since the eigenvalues of P and L are related through
µN+1−i = 1− δtλi for i ∈ [1, N ]. Therefore, the asymptotic
rate of convergence r is given by

r = − lim
n→∞

1

n
ln ‖∆(n)‖= δtλ2, (12)

which is independent of the initial state x(0). Writing ‖
∆(n)‖= Ce−nδtλ2 for large enough n � 1 we note that the
coefficient C depends non-trivially on the initial state x(0)
and the adjacency matrix A. Because of this non-triviality,
not much is known about the coefficient C. However, as we
will show in the following section, the keyhole opening setting
facilitates for some interesting insights to be drawn upon.

IV. BOTTLENECK EFFECT

We now turn to numerical simulations and investigate the
dependence of the consensus convergence with respect to the
keyhole opening size ε using Monte Carlo computer simula-
tions. We briefly describe how these simulations work: During
each Monte Carlo run, a new set of N node coordinates in V
and N(N − 1) channel gains |hij |2 are generated at random.
Note that in this section, we assume a slow flat fading channel
such that the |hij |2 remain constant during the synchronization
process. Using the above, we construct the weighted adjacency
A, Laplace L and Perron P matrices and numerically calculate
λ2, x∗ and also the prefactor C. The latter is obtained by
numerically calculating C =‖Pnx(0) − x∗‖ enδtλ2 for large
enough n and further averaging over 103 randomly generated
vectors x(0) with entries xi(0) distributed uniformly in the
unit interval. Averaging over 104 such Monte Carlo runs we
obtain statistical estimates for λ2(ε) and C(ε), which we plot
in Fig. 2. A best fit is also included for the curve of λ2(ε) =
c1ε + c2ε ln ε where the constants for these particular set of
parameters as stated in the caption are found to be c1 = 1.737
and c2 = −1.550 respectively. The left inset of Fig. 2 shows
the pdf of C(0.05) fitted to a half-normal distribution with
parameter σ = 2. The right inset of Fig. 2 also shows the
linear dependence of the mean of E[C(ε)] = c3 + c4ε for
small values of ε, where the constants for these particular
set of parameters as stated in the caption are found to be
c3 = 0.246 and c4 = −0.119 respectively. We emphasize that
the qualitative behaviour of λ2(ε) and C(ε) is impervious to
other system parameters such as θ,P,N , η, and ρ.

So what does the qualitative trends depicted by Fig. 2 mean
in terms of the keyhole consensus algorithm performance?
To answer this question we must first understand the two
distinct regimes experienced by all linear distributed consensus
algorithms similar to (6): 1) the pre-asymptotic regime, and 2)
the asymptotic regime. These two regimes are clearly visible
on the right panel at Fig. 1.



Fig. 2. Linear (left) and semi-log (right) plots of the convergence rate λ2 as
a function of the keyhole opening ε obtained through Monte Carlo computer
simulations. A best fit is also obtained indicating that λ2(ε) = c1ε+c2ε ln ε.
The insets show the pdf of the convergence coefficient C(ε) for ε = 0.05
and also its mean E[C(ε)] as a function of ε. A linear fit is also shown for
small ε. Parameters used: N=40, η=2,N =P =θ=1, and δt=0.1

During the pre-asymptotic regime, the convergence rate
is significantly faster than that of the asymptotic regime
characterized by λ2. The reason for this is that due to the
initially random states x(0), the system is not only far away
from the equilibrium consensus x∗ state but is also far away
from the eigenmodes of the Perron matrix. Hence, during a
number of initial iterations of P on x(0), the diffusion of the
nodes’ states through the network is predominantly local and
is dominated by a few strong interconnected cycles which as
observed by many authors (including [2]) leads to a so called
transient period during which nodes tend to synchronize in
pairs and/or triplets. This local synchronization clustering thus
occurs at a faster rate than that of global synchronization λ2.

Interestingly, this separation of time scales has been ob-
served and predicted for a large variety of physical ergodic sys-
tems during which pre-thermalization occurs [8]. Borrowing
vocabulary from statistical physics, one can understand pre-
thermalization as a process during which a system converges
towards a quasi-stationary state that differs from the real (final)
thermal equilibrium of the system. Full thermalization, i.e.
relaxation towards the real thermal equilibrium, if present at
all, follows afterwards and occurs on much longer time scales.

So, what does the qualitative trends depicted by Fig. 2 mean
in terms of the keyhole consensus algorithm performance?
For starters, it is clear that for smaller openings, the bottle-
neck effect slows down the asymptotic convergence towards
consensus. Secondly, a smaller opening increases the value
of E[C(ε)]. Recalling that C(ε) is half-normally distributed,
and that the mean and variance of the half-normal distribution
is given by E[C(ε)] = σ

√
2/π and var(C(ε))σ2(1 − 2/π)

respectively, it is evident that smaller openings will also be
associated with greater variations in C(ε). Physically, this is in
agreement with the discussion above since a smaller opening
enhances the locality of the subgraphs found on either side of
the keyhole thus making the pre-thermalization process more
unstableand whilst also hindering the asymptotic regime. Both
these observations are confirmed in Fig. 3 where we plot the
convergence of ‖∆(n)‖ for about 400 different different values
of ε ∈ (0, 1) colour-coded appropriately.

Having analysed the bottleneck effect towards distributed
linear consensus algorithms, we now turn to investigate if and
how our observations and conclusions manifest themselves in

Fig. 3. The convergence of ‖∆(n)for 400 different values of the keyhole
opening ε ∈ (0, 1). In all 400 curves, the node positions and channel gains
are common. Hence the only fundamental parameter which is affected is the
LoS condition χ(ε), which in turn affects the adjacency, Laplace, and Perron
matrices which dictate the consensus performance through C(ε) and λ2(ε).

a more realistic setting.

V. CONSENSUS BASED DISTRIBUTED SYNCHRONIZATION
MODEL FOR SELF-ORGANIZED NETWORKS

We consider a self-organized network consisting of N
nodes, where each node would like to generate pulses s(t)
in specific regular time intervals, but in concert with other
nodes in the network [2]. Because of the assumption that the
network is self-organized at initial moment - i.e. without a
central controller - the nodes generate pulses having different
offsets within a time window of duration T . This is illustrated
in Fig 4. Denote the time offset of the kth node at a time
window n by τk(n). The asynchrony at the initial moment is
described as

τ1(0) 6= . . . 6= τN (0) (13)

The goal of distributed synchronization algorithm is to provide

τ1(0) = . . . = τN (0) (14)

asymptotically, or in the case of practical applications after
certain number of iterations.

The synchronization is achieved by exchanging messages
(pulses s(t)) among nodes according to a given communi-
cation protocol. For a node, once it observes pulses from
other nodes within one window, it should be able to determine
(estimate) offsets of other nodes as compared to its own offset.
For the problem under investigation, it is assumed that the mes-
sages are exchanged over a wireless communication channel,
forming a network with adjacency and Laplace matrices as
defined before.

Hence, we explain how a consensus based algorithm can
be applied to achieve a time offset synchronization for the
previously introduced network model. The main idea is that
each node k, after receiving messages from other nodes in the
network it is connected to at moment n, adjust its time offset
accordingly at moment n+ 1. A discrete time (DT) model is
given by



Fig. 4. Time-offset synchronization illustration.

τk(n+ 1) = τk(n) + δt×∆τk(n+ 1) (15)

∆τk(n+ 1) =
δt∑N

l=1 akl(n)

N∑
i=1

aki(n)τki(n) (16)

where τki = τi(n) − τk(n). The parameter δt is a design
parameter which affects the rate of convergence of the syn-
chronization algorithm as seen in (12). The term defined by
(16) will be called a correction term.

For the vector containing all time offsets τττ = (τ1 . . . τN )T ,
the DT dynamic system given by (15) and (16) can be
represented in the following compact form [1]

τττ(n+ 1) = Pδtτττ(n) (17)

where Pδt is a Perron matrix introduced previously.

A. Correction Term Estimation

In practice, if the communication protocol among nodes
requires all nodes to transmit at the same time over the wireless
communication channel, the correction term (16) cannot be
computed directly, but it has to be estimated from the received
signal which is given in continuous time (CT) form

yk(t) =
N∑
i=1

h̃ki(t)s(t− τki(t)) + v(t) (18)

h̃ki(t) =
√
χki(ε)g(dki)|hki(t)|2 (19)

where v(t) is additive noise of the receiver and h̃ki(t) is the
equivalent channel coefficient defined through (1) and (2). One
way to estimate ∆τk(n) is given in [2].

From the point of view of a reference node, assume that the
node transmits its pulse at the center of the window of length
T (see Fig. 5). The received pulses from other nodes will lie
left and right of the window center. Observe that, due to the
superposition property of a wireless channel and geographical
positions of nodes, the pulses that arrive at the node at similar
moments will superimpose. If the width of the pulse s(t) is
denoted by Ts, the node may choose to sample the received
signal yk(t) by rate K/Ts = KFs where K is a positive
integer. The sampled received signal at nth window is denoted
by

Fig. 5. Time-offset synchronization illustration for a referent node when
τk(n) = 0.

yk(n,m) =
∑
i∈Ak

h̃ki(n,m)s
( m

KFs
− τki(n)

)
+ v(n,m) (20)

where the number of samples during the window of length
T is M = KFsT , and −M/2 < m ≤ M/2. It is common
also to introduce a half-duplex constraint, which means that
the node cannot transmit and receive at the same time. Thus,
during the time interval −Ts/2 ≤ t ≤ Ts/2, the reference
node can only transmit and not listen to other nodes. Now,
the estimation of ∆τk(n) is given as follows [2]

∆τk(n+ 1) =
∑
m∈I

α̂km ×
m

KFs
(21)

α̂km =
|yk(n,m)|2∑
i∈I |yk(n, i)|2

(22)

where I is the set of time instants such that |yk(n,m)|2
is larger than previously defined threshold, which is another
design parameter.

VI. SIMULATION RESULTS FOR KEYHOLE GEOMETRY

In this section, a case study is presented to further investi-
gate a performance of the consensus based synchronization
algorithm for a keyhole geometry. The area of the square
domain is 2 × 2. The nodes are uniformly dispersed over
the square. The adjacency matrix A, describing the node
connectivity, is determined as shown in the previous sections.
The nodes transmit raised cosine pulses s(t) with a roll off
factor 0.2. The pulse crosses the first zero at Ts = 0.01.
The sampling rate is KFs = 5Fs. The simulations are run
for different fading channels corresponding to different fading
coherence times Tc. Here, the coherence time is given in terms
of the number of the synchronization algorithm iterations, e.g.
Tc = 2 means that the channel remains constant during 2
iterations of the algorithm.

Fig. 6 on the left depicts how the average number of itera-
tions required to achieve necessary synchronization accuracy
changes versus ε when the channel remains constant only
during one iteration of the synchronization algorithm (“rapid”
fading, i.e. Tc = 1). The synchronization accuracy is defined
in terms of the maximum allowed time offset which should
be a duration of one sample for a given sampling rate [6]. For



Fig. 6. Left: average number of iterations necessary for algorithm conver-
gence vs. ε for different number of network nodes and “rapid” fading. Right:
average number of iterations necessary for the algorithm convergence for 20
nodes vs. ε for different coherence times of the fading: 1) Tc = 1 means the
channel changes after each algorithm iteration, 2) Tc = 2 means the channel
changes every second iteration, 3) Tc = 5.

different sizes of the network, as ε decreases, it can be seen
that there are roughly two regions of ε which differ in how
quickly the number of iterations changes with ε. For example,
for N = 20, for ε ≤ 0.2 the required number of iterations
n increases quickly from high twenties to 50 iterations for
ε = 0.1. For ε > 0.2, the number of iterations reduces only
by 10 for ε = 0.5. It can be argued that there is a critical size
of the keyhole εcr when the number of the required iterations
becomes more sensitive to a change in the size of the keyhole.

The situation becomes more pronounced when the fading
gets “slower”, i.e. when Tc gets larger. Fig. 6 on the right
shows that for larger Tc and small ε the curves get steeper. This
implies that a careful design of the synchronization algorithm
is needed taking into account time varying channel conditions.

We further analyze in more detail the performance of the
synchronization algorithm in terms of the means square error,
and how the value of ε affects the convergence rate of the
algorithm. The mean square error is defined for each node for
one realization of the algorithm by

ξ2k(n) =
(
τk(n)−

N∑
i=1,i6=k

τi(n)/N
)2

(23)

Fig. 7 shows logE[ξk(n)] for N = 20 nodes for one realization
of the synchronization algorithm vs. discrete time n when the
wireless channel remains constant for Tc = 5 iterations. The
figures illustrate that for a larger value of ε, the convergence
will be fast, corresponding to unit convergence implying that
the asymptotic regime will not be reached. For a small value
of ε, the convergence will be slower, and the algorithm will
enter the asymptotic regime as predicted by λ2.

VII. CONCLUSION

When nodes exchange the information over a wireless
channel to reach a consensus, there exist two contradictory
effects: 1) The connectivity is better (comparing to wired
channels) due to broadcast nature of the wireless channel, and
2) The quality of information received by every node will not
be uniform across the network domain and across time due

Fig. 7. Left: log of square root of mean square error vs. discrete time n for
one realization of the synchronization algorithm for ε = 0.1, Tc = 5 andN =
20 nodes: 1) The slope of dashed line represents the unit rate convergence, 2)
The slope of dot-dashed line represents the rate of convergence predicted by
λ2. Right: log of square root of mean square error vs. discrete time n for one
realization of the synchronization algorithm for ε = 0.2, Tc = 5 and N = 20
nodes: 1) The slope of dashed line represents the unit rate convergence, 2)
The slope of dot-dashed line represents the rate convergence predicted by λ2.

to channel time variations. Therefore, this paper investigates
for the first time how a specific keyhole geometry and channel
variations determine the performance of consensus algorithms.
Two parameters describing the performance, the convergence
rate and convergence constant are statistically characterized as
a function of the keyhole opening. Two convergence regimes
are observed which depend on the size of the keyhole opening.
The rate of decrease of a number of necessary iterations to
reach a consensus versus the size of the keyhole opening is
determined. The importance of the channel coherence time is
emphasized as well. In future, we plan: 1) To improve consen-
sus algorithms by including channel and location information,
2) To continue analytical work on algorithm convergence as
defined by λ2.
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