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Abstract 
 A full-duplex retrodirective array using phase detecting and phase shifting is presented. The 
system autonomously steers its beam in the direction of an interrogator signal, even after the inter-
rogator is turned off. Retrodirectivity is reported for angles of -10°, 0°, and +30. 
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1. Introduction 
 

 A retrodirective array (RDA) is a class of antenna that autonomously responds to an inter-
rogator without knowing the source of interrogation. This type of antenna is applicable to automatic 
pointing and tracking systems, radar transponders, self-tracking wireless communication links, and 
security-sensitive transmissions [1]. 

Most RDAs demonstrated to date are based on analog circuitry with no digital signal pro-
cessing [2]-[4]. The analog nature of these RDAs is appealing because of their resulting simplicity 
compared to smart antennas. However, because these kinds of arrays must process the interrogator 
signal in some fashion to create the retrodirected signal, it causes them to suffer from the limitation 
of only being able to retrodirect while being interrogated. 

This paper presents a new all-analog RDA architecture that does not suffer from this limita-
tion. That is, it is able to respond to an interrogating source that does not have to be constantly 
transmitting. As such, it can respond to pulsed interrogating signals such as those in radar. 

The operating concept is as follows. Assume that the RDA is interrogated from some un-
known direction. To determine the interrogator’s direction of arrival (DOA), the RDA scans the 
entire visible half-plane while detecting the direction of maximum received power (and thus the 
DOA). Next, analog control circuitry sets up the phasing that results in a retrodirected beam back in 
the interrogating direction. 
 
2. Design 
 

 Fig. 1 illustrates the proposed system, which is composed of a phase detector, phase-
shifting module, and control circuit. The phase detector, consisting of a maximum-power detecting 
circuit, determines the DOA. A control circuit then outputs the necessary phase-shifter control volt-
ages that results in a retrodirected beam back in the interrogating direction. 

2.1 Beam Scanning 
Determination of the DOA begins by scanning the entire visible half-plane for RF power. 

This technique was previously demonstrated in [5], but had to operate in power-detection and 
retrodirection modes sequentially, rather than simultaneously. It was also only capable of half-
duplex communication. 

In contrast, the architecture proposed in this paper is capable of simultaneously scanning 
and communicating in full-duplex mode. The DOA determination scheme uses only the two center 
elements of the array in Fig. 1(a), shown in more detail in Fig. 2. The entire visible half-plane is 
scanned from -90° ≤ θ ≤ +90° for RF power at the 8.1-GHz interrogating frequency, where θ is the 
scan angle from broadside. Scanning is performed by adjusting Vscan, which controls phase shifter 
PS1, while maintaining Vfix = 0 V, which fixes phase shifter PS2 to some reference phase. The result 



is Φ, the phase difference between the two center elements in reference to PS2. PS1 and PS2 are 
implemented with Hittite HMC538 phase shifters. 

 

 

(a) (b) 
Fig. 1: Schematic of four-element retrodirective array using a phase detector and phase shifting, 
showing the three major modules: (a) phase-detector and phase-shifting module, and (b) control 
circuit. 

Vscan for PS1 is adjusted via an 8-bit digital counter that iterates through its 256 values and 
feeds an Analog Devices AD7224 DAC. This provides a 0.7° resolution in θ for a single counter 
iteration. The DAC outputs a ramp voltage between 0-1.82 V that corresponds to the 0°-360° phase 
shift Φ applied by PS1. 

 

 
 

 

(a) (b) 
Fig. 2: (a) DOA determination scheme where Ports 1 and 2 correspond to those in Fig. 1(a); (b) 
Schematic of maximum-power detecting circuit where Ports 3 and 4 correspond to those in Fig. 2(a) 
and points (b)-(f) correspond to graphs in Fig. 3. 

2.2 Phase Detection 
As the beam formed by the two center array elements scans the visible half-plane, received 

power at each of those two elements combine through a 2:1 Wilkinson power combiner, and then 
feed a power detector, which outputs an analog voltage corresponding to the detected RF. The Hit-
tite HMC611 power detector has an inverse relationship between detected power and output volt-
age. That is, it outputs a DC voltage minimum when detecting maximum RF power over a sweep, 
and vice versa. 

This voltage is fed to the maximum-power detecting circuit shown in more detail in Fig. 
2(b), which also receives input from the counter. The maximum-power detecting circuit outputs a 
voltage Vtune, proportional to the phase difference between the two antenna elements (and thus, the 
DOA). This voltage is used by the control circuit, described later in Sec. 2.3, to retrodirect a beam.  

Fig. 3 assists in visualizing the DOA determination scheme. Fig. 3(a) shows the DAC ramp 
signal described earlier in Sec. 2.1. Figs. 3(b)-(f) show the voltages at various points in the schemat-
ic of Fig. 2(b), assuming an interrogator located at θ = 0°. At point (b), the power-detecting voltage 
signal is fed to a negative slope detecting circuit, which outputs an analog voltage value of 5 V 
when the slope is negative and 0 V when it is positive. The negative slope signal is split into two 
paths, with one path being digitally inverted; these correspond to points (c) and (d). The two signals 
are then time-shifted in opposite directions, with one being lagged and the other being led and sent 
to an AND gate that combines the signals at point (e). The output of the AND at point (f) yields a 
signal that displays locations where maximum power (and thus the interrogator’s DOA) is detected.  

Upon finding the maximum power, a Motorola MC74F161A 8-bit register simultaneously 
loads the corresponding 8-bit counter value that was fed to PS1 to another DAC that outputs a tun-



ing voltage, Vtune. This voltage represents the progressive phase shift Φp needed for the phase-
shifting module to retrodirect a signal back in the interrogating direction. When not at a maximum 
power level, the register holds the last known maximum power digital value as Vtune. Fig. 1(b) 
shows that Vtune is fed to a control circuit, which then outputs four voltages V1-V4 that control the 
phase shifters that steers a retrodirected signal back to the interrogator.  

 

Fig. 3: Voltages at various points of the maximum-power detecting circuit of Fig. 2(b), assuming an 
interrogator located at θ = 0°. X-axis units are in periods. Y-axis units are in volts. (a) ramp voltage 
controlling PS1 representing a 0°-360° phase shift Φ; (b) power detector voltage; (c)-(e) signals 
manipulated from (b); (f) maximum power detection. 
2.3 Phase-Shifting Module 

Fig. 1(a) shows the phase-shifting module, where an LO at 8.19 GHz feeds a 1:4 Wilkinson 
power divider that feeds four parallel HMC538 phase shifters, then four quasi-Yagi antenna ele-
ments. The phase-shifting module uses 

 , (1) 
where Φp is the progressive phase difference between the antenna elements, d is the antenna ele-
ment spacing, and λ is the interrogating wavelength. 

The phase detector and phase-shifting module are integrated to eliminate the need for sepa-
rate transmit and receive circuitry. They share a 4-element quasi-Yagi array with a 6.0 – 8.7 GHz 
bandwidth (37% fractional bandwidth). The transmit and receive frequencies are 8.19 and 8.10 
GHz, respectively. The array is fabricated on Rogers TMM10i (thickness = 1.016 mm, εr = 9.8) and 
features half-wavelength spacing at 7.82 GHz. 
 
3. Experiment 
 
3.1 Tracking Capability 

 Fig. 4(a) shows the monostatic transmit and receive radar cross section (RCS) pattern of the 
RDA. The plots demonstrate the RDA’s active tracking capabilities across its visible range. The 
transmit setup involved two horns collocated on a sweeping arm that was swept from -40° ≤ θ ≤ 
40°. One horn interrogated the RDA at 8.10 GHz, while the other horn received the transmitted re-
sponse of the RDA at 8.19 GHz. The receive setup used a transmitting horn swept across -40° ≤ θ ≤ 
40° while power received at the RDA was recorded. The -10 dB dips between -30° and -20° are due 
to the introduction of additional peaks in Fig. 3(f) that affected the steering of the RDA. 

3.2 Full-Duplex Operation 
Full-duplex operation of the RDA was demonstrated by taking bistatic patterns in both re-

ceive and transmit modes. Transmit RCS patterns involved using a static 8.1 GHz interrogating 
horn, and a second horn, mounted on a rotating arm that is swept from -60° ≤ θ ≤ 60°, measuring 
the received power from the RDA transmitting at 8.19 GHz. For the receive RCS patterns, an inter-
rogating horn at 8.1 GHz was fixed and the DOA was determined by the RDA. The register was 
forced into a hold state, keeping the RDA pointing in the same direction, while an 8.19 GHz trans-



mitting horn was swept from -60° ≤ θ ≤ 60°. Power received at the RDA was recorded. Experi-
mental transmit and receive RCS patterns are reported in Fig. 4 for interrogating locations of -10°, 
0°, and 30°. There is good agreement with the theoretical plots and the experimental plots that high-
light the RDA’s accurate retrodirective abilities. 

  
(a) (b) 

  
(c) (d) 

Fig. 4: (a) Monostatic radar cross section for transmit and receive modes; Bistatic radar cross sec-
tions with interrogator at: (b) -10°, (c) 0°, and (d) +30°. Proper transmit and receive frequency oper-
ation demonstrates full-duplex capability. 

4. Conclusion 
 

A full-duplex, self-steering array has been presented. Phase detection through power detec-
tion and slope analysis, along with simplified control circuitry accurately determined the DOA with 
and without the presence of interrogating signals. The four-element array operated at a receive fre-
quency of 8.10 GHz and transmit frequency of 8.19 GHz. Retrodirectivity was demonstrated for 
angles of -10°, 0°, and +30°. 
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