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Abstract—We show mathematical structures on opti-
mal solutions in a continuous optimization problem with
a continuous multivariate multimodal objective function :
“minimize : f (x) subject to x ∈ S ⊂ Rn. For realizing
the purpose, we show definitions of (local) minima using
neighborhood of each minimum and using some types of
level set. Moreover, we describe relationship among the
previous definitions and new definitions of (local) minima,
differences of concept of solutions, and the number of solu-
tions especially in case where there exists flat regions on a
function. The new definitions in this paper is simpler than
the previous definitions of (local) minima.

1. Introduction

Continuous optimization problem:“Minimize (min.) a
objective function f (x) ≡ f (x1, x2, . . . , xn) : Rn → R of
n-variable; subject to (s.t.) x ∈ S (compact set)” has been
applied to many fields. Especially, in case where objective
functions (generalized) convex function, many theoretical
results have been obtained[1, 6].

On the other hand, many studies have been done for
problems such that objective functions are nonconvex or
multimodal functions. However, many of these studies are
proposing algorithms or investigating performance and be-
havior of algorithm’s, theoretical studies for these problems
insufficient than for (generalized) convex problems. For
examples, It has not even been defined number of modal-
ity for multimodal problems. Demidenko[2] was investi-
gate basic properties for nonconvex or multimodal prob-
lem. However, it is not take no account of existence of flat
regions in problem.

In this paper, we proposed the local minimal values set
(l.m.v.s.) as a new concept of optimal solutions, and de-
fined the number of modality as the number of connected
components.

The remainder of the paper is organized as follows.
Problem in our paper, definitions of previous local minima
and level sets are given in Sect. 2. In Sect. 3, four types of
sets of local minima are formulated, and mainly inclusion
relations are shown. Definitions and inclusion relations by
level sets are shown in Sect. 4. At last, concluding remarks
are described in Sect. 5.

2. Preliminaries

2.1. Optimization Problem and its assumptions

Continuous optimization problems is formulated as fol-
lows:

(P)
{

min. f̃ (x) ≡ f̃ (x1, x2, . . . , xn),
s.t. x ∈ S ⊂ Rn.

For the problem, we have the following assumptions.

Assumption 1 (A1) S ⊂ Rn is compact, and (A2) function
f is lower semi continuous.

For studying the problem (P) as a unconstrained problem
on Rn, we define a following objective function f .

Definition 2 An extend function f : Rn → (−∞,+∞] is
defined as follows.

f (x) =

⎧⎪⎪⎨⎪⎪⎩
f̃ (x), x ∈ S ;
+∞, x � S .

(1)

2.2. Definitions of previous and these inclusion rela-
tions

At first, we define (global) minimum.

Definition 3 A minimum x∗∗ is

∃x∗∗ ∈ S , ∀x ∈ Rn; f (x∗∗) ≤ f (x), (2)
and set of these points is denoted by X∗∗.

Next, we show the previous definitions on local minima.

Definition 4 For a point x∗ and a ball B(x∗, δ1) with the
centered point x∗ and a radius δ1, if the following equation:

∃x∗, ∃δ1 > 0, ∀x ∈ B(x∗, δ1); f (x∗) ≤ f (x) (3)
holds, then the point x∗ is called the local minimum. More-
over if the above equation is satisfied for a point x∗ in − f ,
then the point is called the local maximum.

Definition 5 For a point x∗s and a ball B(x∗s, δ2) with the
centered point x∗s and a radius δ2, if the following equation:

∃x∗s , ∃δ2 > 0, ∀x ∈ B(x∗s , δ2) \ x∗s; f (x∗s) ≤ f (x) (4)
holds, then the point x∗s is called the strictly local minimum.

Definition 6 For a point x∗i and a ball B(x∗i , δ3) with the
centered point x∗i and a radius δ3, if the following equation:

∃x∗i , ∃δ3 > 0, ∀x ∈ B(x∗i , δ3) \ x∗i ; f (x∗i ) ≤ f (x) (5)

- 94 -

2013 International Symposium on Nonlinear Theory and its Applications
NOLTA2013, Santa Fe, USA, September 8-11, 2013



holds, then the point x∗i is called the isolated local mini-
mum.

2.3. Definitions of level set and connected level set etc.

In this section, we define (connected) level sets at a cut
end of level value of function.

Definition 7 A level set L≤(α) ⊂ Rn ，a strict level
set L<(α)⊂Rn and an equal level set L=(α)⊂Rn at a level
α = f (x)∈R are defined respectively as follows

L≤(α) = { x ∈ Rn | f (x) ≤ α } , (6)
L<(α) = { x ∈ Rn | f (x) < α } , (7)
L=(α) = { x ∈ Rn | f (x) = α } . (8)

Next, we define connected level set etc.

Definition 8 Connected level set etc. of x：
• Connected level set etc.：L≤c (α; x) and L≤c ( f (x))．

The connected component of L≤(α) such that the com-
ponent include x is called connected level set, and
is denoted by L≤c (α; x). In particular, in case where
α = f (x), its set is denoted by

L≤c ( f (x)) ≡ L≤c ( f (x); x) = L≤c (α; x) (at α = f (x)). (9)
Similarly connected equal level set and connected
strictly level set with level α = f (x) of x and can be
defined, and both sets are denoted by as follows.

• connected equal level set with level f (x) of x:

L=c ( f (x)) ≡ L=c ( f (x); x). (10)
• strictly connected level set with level f (x) of x:

L<c ( f (x)) ≡ L<c ( f (x); x) = L≤c ( f (x)) \ L=c ( f (x)). (11)

3. Basic properties of local minima

3.1. Inclusion relations of three types of local minima

In this section, we show three previous types of local
minimal set, and show inclusion relations of three types of
local minima.

Notation 9 The set of (minima, local minima, strictly local
minima, isolated local minima) are denoted by X∗∗, X∗, X∗s,
X∗i , respectively, and these sets are formulated respectively
as follows.

X∗∗={ x∗∗ | ∃x∗∗ ∈ S , ∀x ∈ Rn; f (x∗∗) ≤ f (x) }, (12)
X∗ ={ x∗ | ∃x∗ ∈ S , ∃δ1 > 0, ∀x ∈ B(x∗, δ1);

f (x∗) ≤ f (x) }, (13)
X∗s ={ x∗s | ∃x∗s ∈ S , ∃δ2 > 0, ∀x ∈ (B(x∗s , δ2) \ x∗s);

f (x∗s) < f (x) }, (14)
X∗i ={ x∗i | ∃x∗i ∈ S , ∃δ3 > 0, ∀x∗ ∈ (X∗ \ x∗i );

x∗ � B(x∗i , δ3) }. (15)

From the above definition, inclusion relations among
these sets are easily derived as follows.

X∗∗ ⊂ X∗, X∗i ⊂ X∗s ⊂ X∗, X∗i ⊂ X∗. (16)

Next, we consider the set such that each element of this
set is local minima and is not strict local minima.

Property 10 The set X∗ \ X∗s such that its element is lo-
cal minima and not strictly local minima is formulated as
follows.

X∗s ≡ X∗ \ X∗s ={ x∗s | ∃x∗s ∈ X∗, ∀δ2 > 0, (17)

∃x ∈ (B(x∗s, δ2) \ x∗s
)
; f (x∗s) = f (x)}.

From the above fact，it is found the set whose elements are
local minima and not strict local minima is function values
are all equal at any point on a neighbor of a point of the set.
it that there exists a flat region. That there is a flat region,
that incountably infinite local minima exists in this region.
On the contrary, we show the following properties hold in
case where a flat region not exists.

Property 11 Necessary and sufficient condition that there
is no flat region in S (X∗s = ∅) is all local minima is strictly
local minima (X∗ = X∗s). Moreover, all local minima is
strictly local minima.

Next, we consider a problem with a flat region.

Example 12 We convert the following problem:

( PF )
{

min. f̃ (x1, x2) = (x1 − x2)2

s.t. S = {(x1, x2) | (x1, x2) ∈ [0, 1]2} (18)

into the unconstrained minimization problem on R2 with
extended real valued function f : R2 → R defined by the
equation(1). In this problem, f has a flat region on the line
segment x1 = x2 in (x1, x2) ∈ [0, 1]2. Moreover, a point in
the flat region is local minimum is local minimum, but is
not strictly local minimum, and there is infinite number of
local minima on x1= x2.

We can shown a relationship between the set of strict
local minima X∗s and the set of isolated local minima X∗i．

Property 13 An inclusion relation between strict local
minima and isolated local minima：All of isolated local
minima is strict local minima, that are, the following inclu-
sion relation holds.

X∗i ⊂ X∗s. (19)

From inclusion relations (16) and (19), the following re-
lations hold.

Property 14 In a lower continuous extended real valued
function f : Rn → (−∞,∞] defined by S ⊂ Rn, the fol-
lowing inclusion relations between the sets of minimaX∗∗,
local minimaX∗ strictly local minima X∗s and isolated local
minimaX∗i .

X∗∗ ⊂ X∗ ⊂ S , (20)
X∗i ⊂ X∗s ⊂ X∗ ⊂ S . (21)

From these two relations (20) and (21), we can show the
following properties.

Property 15 If a function f has unique local minimum on
S ⊂ Rn, the point is strict local minimum and isolated local
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Table 1: A comparison among maximum(max.) number of
elements in each types of solution on Dn

types of sets of notation max. number
local minima etc. of elements
local minima X∗ incountably infinite
local minima not incountably infinite
strict local minima

X∗ \ X∗s (flat region)
strict local minima X∗s countably infinite
isolate loca minima X∗i finite
inclusion among sets X∗i ⊂ X∗s ⊂ X∗

minimum and f has unique local minimum.

3.2. Finiteness of local minima on a bound set

　 In this section, we show a property between finite-
ness of local minima and isolated local minima on bound
interval [a, b].

Theorem 16 A necessary and sufficient condition that the
number of local minima is finite on a bound interval
[a, b] ⊂ R is all local minima on [a, b] are isolated.

From this theorem and the fact [a, b] ⊂ R, the following
corollary holds.

Corollary 17 There exists finite local minima on R, then
all local minima are isolated.

We show a property on finiteness of local minima in a hyper
rectangle region similar to theorem 16, as follows.

Theorem 18 A necessary and sufficient condition that the
number of local minima is finite on a hyper rectangle re-
gion Dn ≡ ∏n

i=1[ai, bi] ⊂ Rn is all local minima on Dn are
isolated.

From this theorem and the fact Dn ⊂ Rn, the following
corollary holds.

Corollary 19 If there exists finite local minima on Rn, then
all local minima are isolated.

The number of maximum elements in sets of solu-
tions(local minima etc.) are shown in Table 1.

4. Definitions and basic properties of minima and local
minima by (connected) level sets

In Sect. 3, we define solutions(local minima etc. and
minima) by comparison between function value at a solu-
tion and function values at points on neighbor around the
solution. In this section, we show definitions of solutions
by level set etc. or connected level set.

A notion for “Connectivity” in optimization problem
was already defined by Ortega[5, pp.98–100] in 1970s,
here are also discussed relations with the uniqueness of the

minimum. A definition of connected component that in-
clude a point is shown by Dixon et al.[3, p.36].

4.1. Definition of minimum by level set

The following property hold in definition of minimum
and its level，

Property 20 For extended real valued function f : Rn →
(−∞,∞] , necessary and sufficient condition that a point
x∗∗ in minimum.

∀ε > 0; L≤( f (x∗∗)−ε) = ∅. (22)

In addition, by using a minimum and its equal level set,
the following corollary that is simpler and equivalent to the
above property holds，

Corollary 21 For extended real valued function f : Rn →
(−∞,∞]，a necessary and a sufficient condition such that
x∗∗ is minimum, is that the following equation holds.

L≤( f (x∗∗)) = L=( f (x∗∗)). (23)

Moreover, we can show the following corollary that is
simpler and equivalent to the above property using a mini-
mum and its strict level set，

Corollary 22 For extended real valued function f : Rn →
(−∞,∞], a necessary and a sufficient condition such that
x∗∗ is minimum, is that the following equation holds.

L<( f (x∗∗)) = ∅. (24)

4.2. Definitions and basic properties of local minima
etc. by (connected) level set

At first, we show an example there exist a region whose
local minima is also local maxima.

Example 23 An problem with the following objective func-
tion f̃1 : R→ R

(P1)
{

min. f̃1(x) = max{0, x2 − 1};
s.t. S = {x ∈ R | x ∈ [−3, 3]}. (25)

In this example, there is incountable infinite local minima
on [−1, 1], and any point on (0, 1) is also local maxima. In
such a problem, local minima and local maxima become to
duplicate on its flat region.

We introduce a definition of solutions called “local mini-
mal values set (l.m.v.s.)”[4] for resolving such an unnatural
situation.

Definition 24 For any ε>0, if there exists x∗ ∈Rn and the
following equation:

L≤( f (x∗)−ε) ∩ L≤c ( f (x∗)) = ∅ (26)
is satisfied, then we call the set L≤c ( f (x∗)) local minimum
values set including x∗ . And, especially we denote the set
E∗c( f (x∗)).

Definition 25 All set that is satisfied the Eq.(26) is called
all local minimal values set E∗. That is, all local minimum

- 96 -



values set E∗ is formulated as follows.

E∗=
{
x∗ | ∀ε>0; L≤( f (x∗)−ε) ∩ L≤c ( f (x∗))=∅}. (27)

Inclusion relations among E∗ and set of the previous so-
lutions are as follows.

X∗s ⊂ E∗ ⊂ X∗. (28)
In addition, we show equivalent two definitions to

l.m.v.s. L≤c ( f (x∗)).

Property 26 Necessary and sufficient condition that
L≤c ( f (x∗)) is l.m.v.s. is the following equation holds.

∀y ∈ L≤c ( f (x∗)); f (y) = f (x∗). (29)

From Eq. (8), (10), (11) and the above property, the fol-
lowing corollary also hold.

Corollary 27 Necessary and sufficient condition that
L≤c ( f (x∗)) is l.m.v.s. is one of the following two holds.

L≤c ( f (x∗)) = L=c ( f (x∗)), (30)
L<c ( f (x∗)) = ∅. (31)

4.3. Definitions of multimodal and weak unimodal
functions

Definition 28 Let the number of connected components
for all l.m.v.s. that is determined for a function f : Rn→
(−∞, +∞] is called by a (lower) number of modal, and is
denoted by #|E∗|c.

Definition 29 From the definition, weak (lower) unimodal
functions and (lower) multimodal functions are defined as
follows.⎧⎪⎪⎨⎪⎪⎩

#|E∗|c = 1, weak lower unimodal function;
#|E∗|c ≥ 2, lower multimodal function.

(32)

In the problem P1 of Eq.26, f1 is a convex function and
l.m.v.s. is E∗ = {[−1, 1]}. Thus, #|E∗|c = 1 and f1 become
to a weakly unimodal function on [−1, 1].

All l.m.v.s. of the next problem shown in Fig.1 is E∗ =
{1, 4, [10,11]}, and the number of modal #|E∗|c = 3. Thus
this function is multimodal function on [0.12].
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Fig.1 A function f with three flat regions

Solution sets(set local minima(min.) etc.) and each so-
lution set for the problem of Fig. 1 is shown in Table 1. In

Table 2: Solution sets(set local minima(min.) etc.) and
each solution set for the problem in Fig. 1

types of solutions set in Fig.1
min. X∗∗= {1}
local min. X∗= {1, 4, (6,7), [8,8.5), [10,11]}
isolates loca min. X∗i = {1, 4}
l.m.v.s. E∗= {1, 4, [10,11]}

this table, the number of connected components for the set
of local minima X∗ is #|X∗|c=5. But point x∗3 is not only a
local minimum but also a local maximum, and x∗3 is also a
stationary point. The above duplicated situation, obviously
unnatural.

5. Conclusions

In addition three types of local solutions, it is clear that
the set with flat region is obtained by excepting strict local
minima from local minima. Moreover, if there exists a fi-
nite local minima on a interval or a hyper-rectangle region
then all local minima is isolated, and its converse proposi-
tion also hold.

We introduce the definition of local minimum values
set (l.m.v.s.) by connected level set besides well known
three types of local minima. In addition, it is clear that
three other equivalent definitions to l.m.v.s. are exist. In
generally, definitions by level set be able to represent more
simply than the traditional definitions using neighbor of a
solution.
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