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Abstract—The time-delay connection induced ampli-
tude death has been extensively investigated in the field
of nonlinear science. Our previous study showed that a
time-varying delay connection can induce a stabilization of
unstable steady states in a pair of oscillators. This report
extends our previous study to network oscillators. A linear
stability analysis reveals that such connection is valid even
for network oscillators. The analytical results are verified
by numerical simulations.

1. Introduction

Various nonlinear phenomena have been observed in
coupled nonlinear oscillators, and have been extensively
investigated in the field of nonlinear physics [1]. One
of the interesting phenomena is amplitude death which is
a connection-induced stabilization of an unstable steady
state. Amplitude death has been studied theoretically and
experimentally for the last quarter-century [2, 3, 4, 5].
It was theoretically confirmed that amplitude death never
occurs in diffusively coupled identical oscillators [3, 6].
Reddy et al. showed that a transmission delay in connec-
tion can induce it [7]. Furthermore, amplitude death has
been observed not only in the delay connection but also in
conjugate coupling [8], dynamical coupling [9], and non-
linear coupling [10].
Although the time-delay-induced death would be useful

for the stabilization of coupled unstable systems, it never
occur when the transmission delay is long compared with
an oscillation period of the unstable systems. Thus, ampli-
tude death cannot be induced in the following situations:
there is a long distance between the oscillators; each oscil-
lator has a high frequency. To overcome the above prob-
lems, a distributed delay connection [11] and a multiple
delay connection [12] were proposed; however, the former
is difficult to realize on electronic circuits and the latter cost
twice as much as the conventional time-delay connection.
Therefore, a proposal of easy and low cost connections has
been expected.
Recently, a time-varying delay connection in which

transmission delay varies periodically was proposed [13].
This connection can be implemented by electronic circuits,
and takes low cost. As a result, the time-varying connec-
tion would be one of the strong candidates for overcoming

Figure 1: A sketch of network oscillators coupled by the
time-varying delay connection

the problem. Unfortunately, the previous study focused on
a pair of coupled oscillators; thus, there is a need to extend
the previous study to network oscillators (see Fig. 1).
The present paper deals with amplitude death induced by

the time-varying delay connection in network oscillators.
The stability analysis of amplitude death is investigated for
various network topologies. The analytical results are con-
firmed by numerical simulations.

2. Network oscillators

Let us consider mx-dimensional oscillators (see Fig. 1),

{
ẋi = F(xi) + bui
yi = cxi

(i = 1, 2, . . . ,N), (1)

where xi ∈ Rmx is the state variable of the ith oscillator and
yi ∈ Rmy is the output signal. N is the number of oscillators.
b ∈ Rmx×mu and c ∈ Rmy×mx are the input and output vectors,
respectively. Each oscillator has at least one unstable fixed
point x∗ : F(x∗) = 0. The coupling signal ui ∈ Rmu is

2012 International Symposium on Nonlinear Theory and its Applications
NOLTA2012, Palma, Majorca, Spain, October 22-26, 2012

- 922 -



Figure 2: Time-varying delay function τ(t)

described by

ui = ks

⎧⎪⎪⎨⎪⎪⎩
1
di

⎛⎜⎜⎜⎜⎜⎝
N∑

l=1
εilyl,τ

⎞⎟⎟⎟⎟⎟⎠ − yi

⎫⎪⎪⎬⎪⎪⎭ , (2)

where yl,τ := yl(t − τ(t)) is the delayed output signal and
ks ∈ Rmu×my is the coupling strength. The network topology
is governed by εil as follows: if oscillator i is connected to
oscillator l, then εil = εli = 1, otherwise εil = εli = 0. Here
di :=

∑N
l=1 εil denotes the number of oscillators connected

to oscillator i. Figure 2 shows the time-varying delay τ(t) ≥
0 which varies periodically around the nominal delay time
τ0 > 0,

τ(t) = τ0 + δ f (Ωt), (3)
where δ ∈ [0, τ0) and Ω > 0 are the amplitude and fre-
quency of variation, respectively. f (x) is the periodic tri-
angle function whose period is 2π. The network oscillators
consisting of oscillators (1) coupled by connection (2) have
a steady state,

[
xT
1 · · · xT

N

]T
=

[
x∗T · · · x∗T

]T
. (4)

The dynamics around steady state (4) is governed by{
Δẋi = AΔxi + bΔui
Δyi = cΔxi

, (5)

where Δxi, Δyi, and Δui are the perturbations of oscillator i
around x∗. Here A := {∂F/∂x}x=x∗ is the Jacobian matrix.
The coupling signal is given by

Δui = ks

⎧⎪⎪⎨⎪⎪⎩
1
di

⎛⎜⎜⎜⎜⎜⎝
N∑

l=1
εilΔyl,τ

⎞⎟⎟⎟⎟⎟⎠ − Δyi

⎫⎪⎪⎬⎪⎪⎭ . (6)

The linear system consisting of Eq. (5) and Eq. (6) is de-
scribed by

Ẋ = (IN ⊗ As)X + ks(E ⊗ bc)Xτ, (7)

where X :=
[
ΔxT

1 · · ·ΔxT
N
]T , Xτ := X(t − τ(t)), and As :=

A− ksbc. The matrix IN denotes a N-dimensional identity
matrix. The elements of E are given by {E}il = εil/dl (l � i)
and {E}ii = 0.

3. Stability analysis

It is guaranteed that the time-invariant system,

Ẋ = (IN ⊗ As)X +
1
2δ
ks(E ⊗ bc)

∫ t−τ0+δ

t−τ0−δ
X(z)dz, (8)

is stable if and only if linear system (7) with large Ω is
stable [14]. The stability of time-invariant system (8) is
described by the characteristic equation G(s) = 0, where

G(s) := det
[
sINmx − IN ⊗ As − ks(E ⊗ bc)e−sτ0H(sδ)

]
.
(9)

The function H(x) is defined by

H(x) :=

⎧⎪⎪⎨⎪⎪⎩
sinh x

x if x � 0
1 if x = 0

. (10)

Since (IN − E) is a self-adjoint and positive semidefinite
operator [15], it can be diagonalized as T−1(IN − E)T =
diag(ρ1, . . . , ρN), where T is a diagonal transmission matrix
and ρp(p = 1, . . . ,N) is an eigenvalue of (IN − E). Thus,
we can rewrite Eq. (9) as follows:

G(s) = det
[
(T−1 ⊗ Imx )

{sINmx − IN ⊗ As − ks(E ⊗ bc)e−sτ0H(sδ)}
(T ⊗ Imx )

]
= det

[
sINmx − IN ⊗ As

−ks
(
IN − T−1(IN − E)T ⊗ bc

)
e−sτ0H(sδ)

]
= det

[
sINmx − IN ⊗ As

−ks
(
IN − diag(ρ1, . . . , ρN) ⊗ bc) e−sτ0H(sδ)

]
.

The characteristic equation can be described by

G(s) =
N∏

p=1
gs(s, ρp) = 0, (11)

where

gs(s, ρp) := det
[
sImx − As − ks(1 − ρp)bce−sτ0H(sδ)

]
,

(p = 1, 2, . . . ,N). (12)

The time-invariant system (8) is stable if and only if all the
roots of gs(s, ρp) = 0 for all p ∈ {1, 2, . . . ,N} lie in the left
half complex plane.
The eigenvalue of (IN − E) is given by

0 = ρ1 ≤ ρ2 ≤ · · · ≤ ρN ≤ 2. (13)

Since the minimum eigenvalue ρ1 is fixed at zero, Eq. (11)
includes

gs(s, 0) = det
[
sImx − As − ksbce−sτ0H(sδ)

]
. (14)

Now we derive the sufficient condition in which amplitude
death never occurs. For s ∈ R, we have

lim
s→+∞ gs(s, 0) = +∞. (15)
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Figure 3: Stability regions for various network topologies
(δ = 0.38, N = 20)

Substituting s = 0 into gs(s, ρ1), we obtain

gs(0, 0) = det
[
−A

]
=

mx∏
q=1
(−σq),

where σ1, . . . , σmx are the eigenvalues of A. If A has an
odd-number of real positive eigenvalues, gs(0, 0) < 0 holds.
For gs(0, 0) < 0 and Eq. (15), equation gs(s, 0) = 0 has
at least one real positive root; therefore, if A has an odd-
number of real positive eigenvalues, amplitude death never
occurs for any E, b, c, ks, τ0, and δ.

4. Limit cycle oscillators

Let us consider oscillators (1) and connection (2) with

F(x) =

⎡⎢⎢⎢⎢⎢⎢⎣
{
μ − x(1)2 − x(2)2

}
x(1) − ωx(2){

μ − x(1)2 − x(2)2
}

x(2) + ωx(1)

⎤⎥⎥⎥⎥⎥⎥⎦ , (16)

b = I2, c = I2, ks = ksI2, (17)

where μ > 0 and ω > 0 denote the amplitude and the fre-
quency of the oscillator, respectively. Each oscillator has
an unstable fixed point x∗ = [0 0]T. The Jacobian matrix
around the fixed point is given by

A =
[
μ −ω
ω μ

]
. (18)

The eigenvalues σ1,2 = μ ± jω of A, which have two real
positive roots, do not satisfy the above condition for non-
occurrence of amplitude death. The characteristic equation
(12) is described by

gs(s, ρp) =
[
s − μ + ks

{
1 − (1 − ρp)e−sτ0H(sδ)

}]2
+ ω2.
(19)

Substituting s = jλ, λ ∈ R, into gs(s, ρp) = 0, its real and
imaginary parts are given by

−μ + ks − ks(1 − ρp)φ(λδ) cos (λτ0) = 0, (20)

λ − ω + ks(1 − ρp)φ(λδ) sin (λτ0) = 0, (21)

where

φ(x) :=

⎧⎪⎪⎨⎪⎪⎩
sin x

x if x � 0
1 if x = 0

. (22)

According to the analysis of previous study [13], we can
derive the marginal stability curves in (ks, τ0) space.
Now we consider numerical examples for the delay am-

plitude δ = 0.38 and the number of oscillators N = 20.
The parameters of oscillators are set to μ = 0.5 and ω = π.
Figure 3 shows the stability regions for various network
topologies: chain, ring, small-world (the number of short-
cuts NC = 5), and all-to-all. The black, red, and blue curves
denote the marginal stability curves which are the solution
of gs( jλ, ρp) = 0 in terms of ks and τ0. For a given τ0,
when ks increases and crosses the bold (thin) curve, a root
of gs(s, ρp) = 0 crosses the imaginary axis from right to left
(left to right). The shaded area denotes the stability region
where all the roots of gs(s, ρp) = 0, ∀p ∈ {1, . . . , 20}, lie
in the left half complex plane. For all the network topolo-
gies, there exist the stability regions which have no upper
limit in the range ks ∈ (2.94, 7.34). Thus, steady state (4)
can be stabilized by the arbitrarily long delay τ0. The red
and blue curves denote the solution of g( jλ, ρ1) = 0 and
g( jλ, ρ20) = 0. It can be seen that the stability regions are
surrounded by these two curves. Hence, it could be consid-
ered that the stability region depends on the curves with the
minimum ρ1 = 0 and the maximum ρN .
For both of the chain topology and the ring topology,

their maximum eigenvalues of (IN − E) are ρ20 = 2 and
their stability regions are identical. For the all-to-all topol-
ogy, the maximum ρ20 = 1.05 is the lowest among all
the topologies and the stability region is the largest among
them. Therefore, we can see that the stability region in
(ks, τ0) space enlarges with decreasing the maximum eigen-
value ρN .
To confirm our analytical results, we show the numeri-

cal simulations. Figure 4 shows time-series data at point
A (ks, τ0) = (2.0, 2.5) and point B (ks, τ0) = (6.0, 1.5) in
Fig. 3(d). The solid and dash lines are the behavior of
x1(1) and x1(2) of the 1st oscillator, respectively. All the
oscillators are coupled at t = 20. At point A outside of
the stability region, x1(1) and x1(2) do not converge on the
fixed point x∗ after the coupling. In contrast, at point B
inside of the stability region, they converge on the fixed
point x∗ after the coupling. It is numerically confirmed that
amplitude death occurs in network oscillators by using the
time-varying delay connection.
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(a) Point A (ks, τ0) = (2.0, 2.5)
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(b) Point B (ks, τ0) = (6.0, 1.5)

Figure 4: Time-series data in Fig. 3(d)

5. Conclusion

The present paper showed that amplitude death occurs
in network oscillators by using the time-varying delay con-
nection. For the various network topologies, we provided
the stability regions in the connection parameter space.
These results are confirmed by the numerical simulations.
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