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1. Introduction 
 

 Since 1975 when Benoit Mandelbrot has defined fractals for the first time [1], many new 

shapes and applications for fractals continue to emerge [2]. The most well known examples are 

fractal-shaped antennas and frequency selective surfaces (FSS). Recently, PIN Diodes have been 

integrated in active FSS to obtain tunable frequency response [3-6]. Using classical methods, the 

study of such complex structures requires long CPU time and huge memory resources. When these 

structures contain fine details, the high aspect ratio leads to badly scaled matrices and convergence 

problems. In this paper, a multi-scale (MS) approach combined to the Generalized Equivalent 

Circuit (GEC) Modeling is applied to simplify the electromagnetic study of pre-fractal structures. 

The idea is to split the complex structure into sub-structures which are again split into smaller sub-

structures until the smallest one is reached. For each sub-structure is associated a scale level and 

scale level 1 is attributed to the smallest sub-structure. The computation starts from scale level 1: N 

active modes illuminate the considered level in order to compute its surface impedance Matrix from 

which an impedance operator is deduced. The transition to the next level is done by replacing the 

previous level by its impedance operator. The previous steps will be done for each level till the 

highest one. In this paper, the MS-GEC technique is applied to compute the surface impedance of a 

pre-fractal structure with incorporated PIN diodes. The results of the MS-GEC method converge to 

those of the MoM method when a sufficient number of active modes are used at each scale level.    

 

2. Description of the Multi-Scale approach 
 

 The multi-scale approach is based on the self similarity nature of studied structures. To 

explain the concept, the structure to be considered is depicted Fig. 1. 

          
Figure 1: Cantor iris at scale 2 with incorporated PIN Diodes  

 

The first step of the multi-scale (MS) method is to define the sub-domains. Once partitioned, the 

computation starts from the smallest scale level (s=1) for which, convenient boundary conditions 

have to be considered. Next, iN active modes of the contour enclosing the studied scale level iS  are 

used to compute the corresponding surface impedance matrix which will be converted to an 

impedance operator  iSZ . The transition to the next scale level 1iS   is done by replacing the previous 

scale level iS  by its impedance operator and so on. The number of active modes is an important 

criterion of the MS method since they describe the electromagnetic coupling between two 

subsequent levels: a precise  iSZ  requires many active modes. In this paper, the accuracy of the MS 

method versus the MoM is evaluated with the number of active modes.  
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3. Application of the Multi-Scale approach 

 

3.1 Partitioning process 

   The considered structure of Fig. 1 is partitioned into sub-domains as shown in Fig. 2.  

                   

Figure 2: partitioning process 

 

The structure is composed of two identical domains 1

1

SD  and 1

2

SD  called generator pattern. To 

apply the GEC approach, the incorporated PIN diodes have been modeled as detailed in section 3.2.    

3.2 PIN Diode 

 Fig. 3 shows the equivalent circuit models of a PIN Diode in forward and reverse bias 

modes [4]. Fig. 3(a) and (b) show the forward and the reverse bias equivalent circuits. Fig. 3(c) 

presents a converted series RLC reverse bias equivalent circuit. In this paper, the values used for 

forward bias are 5R    and 0.4L nH . For reverse bias, a capacitance 0.27C pF is added. 

 
 

Figure 3:  The PIN Diode (a) Forward bias equivalent circuit, (b) Reverse bias equivalent circuit,     

(c) Reverse bias equivalent series RLC circuit   

 

According to its ON/OFF state, each PIN diode can be replaced by a surface impedance ZD  of 

width w  and height d expressed using its intrinsic (R, L, C) characteristics.  
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3.3 Multi-Scale Method   

 The steps needed to compute the surface impedance of the structure Fig.1 using the MS 

method are detailed in Fig. 4. 

 

Figure 4: Illustration of the multi-scale method for the case of Cantor Iris at scale level2 
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3.4 Surface impedance of scale level 1   

The sub-structure of scale level 1 is called the generator pattern. Its surface impedance matrix is 

computed using the Generalized Equivalent Circuit (GEC [7-11]) Model shown in Fig. 5.   

 

Figure 5: The generator pattern and its GEC  

                              

Let  1s

mf be the local modal basis of the EMEM waveguide enclosing the generator pattern. 

1 1 1s s s

i i iE V f  are the excitation sources where  1 , 0.. 1s

if i N   represents the active modes useful to 

describe the coupling between two subsequent scale levels. The impedance operator  1s

Z  is 

expressed as a function of higher-order modes. These localized modes are needed to describe the 

electromagnetic behavior within discontinuities. 
DZ stands for the diode surface impedance 

localized in the diode domain. The problem’s unknown 1s

eJ  is expressed as a series of known test 

functions 1s

pg  weighted by unknown coefficients 1s

px . 1s

eJ  exists along the metallic and the diode 

domains and is zero on the lossless dielectric domain. The surface impedance of scale level 1 is 

expressed Eq. 2. 
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3.5 Surface impedance of scale level 2    

 The surface impedance of scale level 2 is computed using the GEC depicted Fig. 7. 
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surface impedance matrix 1SZ  of the previous scale level is converted to an impedance operator  1SZ  
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Figure 7: a) equivalent structure at scale level2, b) GEC of the equivalent scale level2 

 

The impedance 2ZD is located in the PIN diode domain while the impedance operator  1SZ is defined 

in 1 2

1 1andD D   domains. The current 2S

eJ  exists all over 1 2

1 1,D D and Diode domains. 

 

The surface impedance expression of the equivalent structure Fig. 7.a) is given below:  

 

(3) 
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4. Results 
 

 The surface impedance of the structure Fig.1 is computed using the MoM and the MS 

methods at 2.45GHz. Let  2 _ 2 _

2 _

%
S MoM S MS

S MoM

Z Z

Z



  be the relative error between the two 

impedances.  When using one active mode at scale level 1, the relative error is important: 23% for 

the real part and 11.7% for the imaginary part. In fact, one active mode is unable to fully describe 

the coupling between scale levels. To perform a better transition from a scale toward another, an 

accurate coupling needs to be computed by adding more active modes at lower scale levels.  

 
Figure 8: relative error variation with the number of active modes at lower levels 

Structure dimensions: a=10.2mm, b=22.9mm, 1/3  . f=2.45GHz,diode width=0.5mm, diode ON  

Fig. 8 shows that the results obtained by the MS approach converge to those obtained by the MoM 

method when a sufficient number of active modes are used at each scale level. In our case, starting 

from 17 active modes, the relative error is less than 0.23% for the real part of the total surface 

impedance and less than 1% for the imaginary part.   
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