
Reinforcement learning based on electro-optic delay-based reservoir
computing

Kazutaka Kanno† and Atsushi Uchida†

†Department of Information and Computer Sciences, Saitama University,
255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan
Emails: kkanno@mail.saitama-u.ac.jp, auchida@mail.saitama-u.ac.jp.

Abstract—Machine learning based on photonic imple-
mentation has been paid increasing attention for fast infor-
mation processing and energy efficiency. In this study, we
present numerical demonstration of reinforcement learning
based on photonic reservoir computing using an electro-
optic delay system. Reinforcement learning is one of ma-
chine learning schemes to do so as to maximize a reward
from environment. Photonic reservoir computing receives
states in environment and decides actions, where photonic
reservoir computing is trained based on Q-learning to max-
imize the total reward. Cart-pole problem, which is a fa-
mous benchmark task in reinforcement learning, is demon-
strated to evaluate the performance of our scheme.

1. Introduction

Reinforcement learning is one of machine learning
schemes and concerned with the problem of training an
action policy to maximize the total reward [1]. Many com-
plex tasks and games have been solved using reinforcement
learning models [2, 3]. Deep neural networks have been
used in many of their works. However, computational costs
are often very expensive in deep neural networks based re-
inforcement learning schemes because networks weights
are repeatedly trained using vast playing data. Some tech-
niques have been proposed to reduce computational costs,
such as the prioritized experienced replay [4].

Another scheme to reduce computational costs uses
reservoir computing [5]. Reservoir computing is an in-
formation processing framework based on recurrent neural
networks [6]. The main characteristic of reservoir comput-
ing is that input and connection weights are randomly fixed
whereas only output weights are trained. The characteris-
tic makes it possible to reduce the computational cost of
learning because only the output weights are trained.

Recently, physical implementations of reservoir comput-
ing has been intensively studied [7]. Photonic implemen-
tation of reservoir computing is one of them, where a laser
diode and a delayed feedback loop are used to implement a
reservoir [8]. A motivation for photonic implementation of
reservoirs is to realize fast information processing devices
with low learning cost. It has been reported that speech
recognition at 1.1 Gbyte/s is achieved by photonic reservoir
computing [9]. The reduction of computational costs and

fast processing speed are expected if reinforcement learn-
ing is implemented using delay-based reservoir computing.

In this study, reinforcement learning based on delay-
based reservoir computing is numerically demonstrated.
Delay-based reservoir computing is implemented using an
electro-optic delay system, which has been studied for
physical reservoir computing [8]. Delay-based reservoir
computing is used for selecting an agent’s action. Cart-pole
problem, which is a famous benchmark task in reinforce-
ment learning, is demonstrated to evaluate our scheme.

2. Reinforcement learning based on reservoir comput-
ing

Figure 1 shows a schematic diagram of reinforcement
learning based on reservoir computing. In reinforcement
learning, an active decision-making agent and its environ-
ments are considered. The agent interacts with its environ-
ment, where the agent’s action affects the future state of the
environment and a reward is given by the environment to
the agent as the result of the action. The agent’s objective
is to maximize the total reward. However, the agent has
no information about a good action policy. Here, a value
Q(sn, an) for the state sn and the action an at the n-th time
step is considered. The value Q(sn, an) is called the action-
value function. The agent selects an action with the highest
value of Q in a given state. If the agent has the knowledge
of Q, the total reward can be enhanced. In many researches,
the action-value function is replaced to deep neural net-
works and the networks are trained using Q-Learning [2,3].
In this study, the action-value function is replaced to delay-
based reservoir computing. In the following subsessions,

Nonlinear
Node

Feedback

Node

Environment
Action�

Reward�

State�

Input layer

Reservoir

Output layer

Figure 1: Schematic diagram of reinforcement learning
based on delay-based reservoir computing.

- 425 -

2020 International Symposium on Nonlinear Theory and Its Applications,

NOLTA2020, Virtual, November 16-19, 2020

we describe a scheme of delay-based reservoir computing,
a training method for reservoir computing, and an electro-
optic delay system for reservoir computing.

2.1. Delay-based reservoir computing

In delay-based reservoir computing systems, a reservoir
consists of a nonlinear element and a feedback loop, which
emulates a network with a large number of connected nodes
[5]. The n-th input data into the reservoir is the state vec-
tor given from the environment sn = (sn,1, sn,2, · · · , sn,Ns),
where Ns is the number of states. The state is injected
into the reservoir after preprocessing is applied. The pre-
processing is called masking procedure, where the state is
multiplied by a mask matrix M. The value of the mask is
randomly taken from a uniform distribution of [-1, 1]. The
masking procedure is given by the following equation,

un = µM(sn,1, sn,2, · · · , sn,Ns , b)T = µM(sn, b)T , (1)

where M is the mask matrix which is a Ns + 1 × N matrix,
µ is the scaling factor, and T represents the transposition.
N is the number of nodes in the reservoir. The elements
of the vector un is given by un,i, which corresponds to an
input data into the i-th virtual node. It should be noted that
a fixed bias b is added to Eq. (1). The role of this bias is
to prevent that the signal un becomes nearly equal to zero
when the elements of the state sn are nearly equal to zero. A
signal injected into the reservoir is generated by stretching
the elements of un to the node interval θ as following,

u(t + (n − 1)Tm) = un,i ((i − 1)θ ≤ t < iθ), (2)

where Tm is called the mask period. The parameters µ and
b are fixed at µ = 0.8 and b = 1.0, respectively.

The output of reservoir computing is the action-value
function Q(sn, a) for reinforcement learning and calculated
from the weighed linear combination of virtual node states.
The virtual node states are extracted from the temporal out-
put of the reservoir by temporally dividing the output with
the node interval θ. The output for an action a is repre-
sented as Q(sn, a) and given by the following equation,

Q(sn, a) =
N∑

j=1

w jx j,n = waxT
n , (3)

where xn is the vector of node states for the n-th input
and wa is the weight vector for the action a. The number
of reservoir outputs corresponds to the number of agent’s
actions in reinforcement learning. In reinforcement learn-
ing, an action with the highest value of Q is selected. The
weight wa is trained based on Q-learning in reinforcement
learning.

2.2. Training for reservoir weights in reinforcement
learning

One of popular training algorithms in reinforcement
learning is Q-learning [1]. In our study, Q-learning is used

for training reservoir weights. In Q-learning, the action-
value function Q(sn, an) is updated in accordance with the
following rule [1],

Q(sn, an)←Q(sn, an)

+ α
[
rn+1 + γmax

a
Q(sn+1, a) − Q(sn, an)

]
(4)

where α is the constant step-size parameter and γ is the pa-
rameter called the discount rate. The action-value function
Q(sn, an) is replaced using Eq. (3).

wan xT
n ← wan xT

n + α
[
rn+1 + γmax

a
waxT

n+1 − wan xT
n

]
(5)

The node state vector is multiplied to the both sides of Eq.
(5) from the right, and the both sides are divided by the
square of the absolute state vector.

wan ← wan +
α

|xn|2
[
rn+1 + γmax

a
waxT

n+1 − wan xT
n

]
xn (6)

Equation (6) is the update rule of the reservoir weights. In
this study, α/ |xn|2 is replaced to α for simplicity. The pa-
rameters α and γ are fixed at α = 0.00001 and γ = 0.995,
respectively.

For training the reservoir weights, a technique known as
experience replay [10] is applied. For experience replay,
the size of minibatch is 64 and the memory size is 2000.

2.3. Numerical model of an electro-optic delay system

Electro-optic delay systems have been studied for delay-
based reservoir computing [8]. The schematic diagram of
an electro-optic system for reservoir computing is shown
in Fig. 2. The main components of the system are a
laser diode (LD), a modulator (Mach-Zehnder modulator,
MZM), and an optical fiber. The modulator provides a
nonlinear transfer function cos2(·). The optical fiber im-
plements the delayed feedback loop with the delay time τ.
The optical output of the MZM is delayed with the optical
fiber and transformed to an electric signal by a photode-
tector. The electric signal is fed back to the MZM after
the signal passed through an electric amplifier. An input
signal for reservoir computing is injected by coupling with
the feedback signal.

The electro-optic system can be modeled by the follow-

LD
MZM PD

β

AmpISO Fiber

Input signal

Figure 2: Model of an electro-optic delay system for reser-
voir computing.

- 426 -

�
�����

Cart position
���

���

�
�

�������

Figure 3: Schematic diagram of the CartPole-v0 task [12].

ing delay differential equations [11],

τL
dx(t)

dt
= −

(
1 +
τL

τH

)
x(t) − y(t) + ξ(t)

+ β cos2 [
κx(t − τ) + πu(t)/4 + ϕ

]
(7)

τH
dy1(t)

dt
= x1(t) (8)

where x is the normalized output of the MZM. τL and τH

are the time constants describing the low-pass and high-
pass filters which are related to frequency bandwidths of
the components. β is the dimensionless constant that de-
scribes the feedback strength. ϕ represent the offset phase
of the MZM. u(t) is the input signal injected into the reser-
voir. ξ(t) is white Gaussian noise with the properties
⟨ξ(t)⟩ = 0 and ⟨ξ(t)ξ(t0)⟩ = δ(t − t0), where ⟨·⟩ denotes
the ensemble average and δ(t) is the Dirac’s delta function.

In our numerical simulation, the number of virtual nodes
N is 600 and the node interval θ is 0.05 µs. Then, the delay
time τ is given by τ = (N − 1)θ = 29.95 µs. The offset
phases ϕ is −π/4. 1/(2πτL) = 100 MHz, 1/(2πτH) = 5
kHz, β = 1, and κ = 0.9 are fixed.

3. Numerical Results

We evaluate our scheme of reinforcement learning based
on delay-based reservoir computing in a famous reinforce-
ment learning task: CartPole-v0 [12] in OpenAI Gym [13].
The schematic diagram of the CartPole-v0 task is shown
in Fig. 3. A pole is attached by an un-actuated joint to a
cart, which moves along a frictionless track. The number
of states of the task is 4: cart position zn, cart velocity, pole
angle θn, and pole velocity at tip. The agent’s action is to
push the cart to right (+1) and left (-1). The goal of the task
is to keep the pole upright over an episode. A length of the
episode is 200 time step. A reward of +1 is provided for
every timestep that the pole remains upright. The episode
ends at the pole velocity |θn| ≥ 12 degrees (about 0.209 ra-
dian) or the cart position |zn| ≥ 2.4. It is considered the task
is solved when the pole remains upright over an episode for
100 consecutive episodes.

The magnitudes of the cart position and the pole velox-
ity are normalized to become one at their maximum values
before injected into the reservoir.

For action selection, an ε-greedy method is used, where
random selection is taken with the probability of ε. A value
of ε is updated by ε = 0.01 + (1.0 − 0.01) exp(−0.01nep),
where nep is the episode index.

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

-1

1

0 5 10 15 20 25 30 35 40

P
o

le
 a

n
g

le
 [

ra
d

]

A
c

tio
n

Time step

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

-1

1

0 5 10 15 20 25 30 35 40

P
o

le
 a

n
g

le
 [

ra
d

]

A
c

tio
n

Time step

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

-1

1

0 50 100 150 200

P
o

le
 a

n
g

le
 [

ra
d

]

A
c

tio
n

Time step

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

-1

1

0 50 100 150 200

P
o

le
 a

n
g

le
 [

ra
d

]

A
c

tio
n

Time step

(a) (b)
Episode 1 Episode 400

(c) (d)

Figure 4: Temporal evolution of the pole angle and the se-
lected action in the CartPole-v0 task. (a) and (b) are the
results of the episode 1 and 400, respectively. The black
curve is the pole angle and the red circle is the selected
action. (c) and (d) are the enlarged views of (a) and (b),
respectively.

Figure 4(a) shows the temporal evolution of the angle
and the selected action at the first episode. The enlarged
view of Fig. 4(a) is shown in Fig. 4(c). In the first episode,
the agent takes a random action because ε is 1. The pole
angle monotonically increases for more than the time step
of 6. The pole leans to the right for a positive value of
the pole angle and the agent needs to select the action of
+1 to prevent for the pole to fall. However, the action is
randomly selected and the pole falls (the angle becomes
larger than 0.209 radian) at the time step of 19. Figure
4(b) shows the result of the episode over which the pole
remains upright. The enlarged view is shown in Fig. 4(d).
The angle repeatedly increases and decreases around zero
. When the angle increases (for example, the time step is
from 5 to 8 in Fig. 4(d)), the agent selects the action of
+1, which corresponds to pushing the cart to the right to
prevent for the pole to fall to the right. It is found that the
reservoir is trained to prevent for the pole to fall.

Figure 5 shows the total score over an episode, where the
pole remains upright over the episode if the total reward
is 200. When the episode index is small, the pole cannot
keep upright. However, the pole becomes to be able to keep
upright over an episode as the episode index increases. In
Fig. 5, the CartPole-v0 task is solved since 100 consecutive
episodes with the total reward of 200 is found.

Finally, we investigate the effect of the input bias b for
preprocessing an input signal in reservoir computing. Fig-
ure 6 shows the total reward over an episode when the input
bias b is fixed at zero. The total reward does not reach at
200 and the pole cannot keep upright for all episodes. The

- 427 -

0

50

100

150

200

0 200 400 600 800 1000

T
o

ta
l

re
w

a
rd

Episode index

Figure 5: Total reward in each episode. The pole keeps
upright over an episode if the total reward is 200.

0

50

100

150

200

0 200 400 600 800 1000

T
o

ta
l

re
w

a
rd

Episode index

Figure 6: Total reward in each episode. The input bias b
for preprocessing in reservoir computing is zero.

reason why the task cannot be solved when the input bias b
is not included in the reservoir preprocessing is the follow-
ing: there is no input information when the state of the task
is zero or a small value.

4. Conclusions

In this study, reinforcement learning based on delay-
based reservoir computing was numerically demonstrated.
Main components of delay-based reservoir computing were
a nonlinear node and a delayed feedback loop. Delay-based
reservoir computing was implemented using an electro-
optic delay system. In reinforcement learning, a state given
from environment was injected into the reservoir and it pro-
duced the action-value function. The weights of the reser-
voir were trained using Q-Learning. To evaluate our sys-
tem, a CartPole-v0 task was demonstrated. Our system
showed successful computation for the CartPole-v0 task.
We also investigated an input bias used for preprocessing
input data in reservoir computing. Without the bias, the
CartPole-v0 task could not be achieved. Therefore, the in-
put bias was required for solving the reinforcement learn-
ing task.

Acknowledgments

This work was supported in part by JSPS KAK-
ENHI (JP19H00868 and JP20K15185), JST CREST JP-
MJCR17N2, and The Telecommunications Advancement

Foundation.

References

[1] R. S. Sutton and A. G. Barto, Reinforcement Learn-
ing: An Introduction, second edition, The MIT Press,
(2018).

[2] D. Silver, A. Huang, C. J. Maddison, A. Guez,
L. Sifre, G. van den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, S.
Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I.
Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T.
Graepel, and D. Hassabis, Nature, vol. 529, pp. 484–
489 (2016).

[3] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J.
Veness, M. G. Bellemare, A. Graves, M. Riedmiller,
A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie,
A. Sadik, I. Antonoglou, H. King, D. Kumaran, D.
Wierstra, S. Legg, and D. Hassabis, Nature, vol. 518,
pp. 529–533 (2015).

[4] T. Schaul, J. Quan, I. Antonoglou, and D. Silver,
arXiv:1511.05952 (2016).

[5] H. Chang and K. Futagami, Applied Intelligence, vol.
50, pp. 2400–2410 (2020).

[6] H. Jaeger and H. Haas, Science, vol. 304, pp. 78–80
(2004).

[7] G. Tanaka, T. Yamane, J. B. Héroux, R. Nakane, N.
Kanazawa, S. Takeda, H. Numata, D. Nakano, and
A. Hirose, Neural Networks, vol. 115, pp. 100–123
(2019).

[8] Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B.
Schrauwen, M. Haelterman, and S. Massar, Scientific
Report, vol. 2, Article number: 287 (2012).

[9] D. Brunner, M. C. Soriano, C. R. Mirasso, and I. Fis-
cher, Nat. Commun., vol. 4, Article number: 1364
(2013).

[10] J. O’Neill，B. Pleydell-Bouverie，D. Dupret，J.
Csicsvari, Trends in Neurosciences, vol. 33, pp. 220–
229 (2010).

[11] T. E. Murphy, A. B. Cohen, B. Ravoori, K. R. B.
Schmitt, A. V. Setty, F. Sorrentino, C. R. S. Williams,
E. Ott, and R. Roy, Phil. Trans. R. Soc. A, vol. 368,
pp. 343–366 (2010).

[12] A. G. Barto, R. S. Sutton, and C. W. Anderson, IEEE
Transactions on Systems, Man, and Cybernetics, vol.
SMC-13, pp. 834–846 (1983).

[13] G. Brockman, V. Cheung, L. Pettersson, J. Schneider,
J. Schulman, and W.Z. Jie Tang, arXiv:1606.01540
(2016).

- 428 -

