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Abstract—A coupled system of delay filerential equa- 2. Sample model to be reduced
tions motivated through the corticothalamic dynamics
is systematically reduced to the complex and the real In the present study, we analyze the following equa-
Ginzburg-Landau equations. Two analytically So|vab|éi0ns originated from Kim and Robinson’s corticothalamic
problems are discussed; (1) relaxation process from afyodel [6]:
initial state to the corresponding attractor (limit cycles or

attractive fixed point) and (2) amplitude death of coupled ~ Xi(®) = ¥%j(t) + ajx;(t) + B;Xi(t — to) + ex;(1)°

two oscillators due to "negative average bifurcation param- N

eter” as well as due to large frequencyfeiience. Projec- + Z Kik(%(t) = xj (1)), (1)
kel

tion from infinite dimensional phase space to the center
subspace (subspace.spann?d by eigenfunctions belong\ilwere Xj(t) is a mean firing rate of neurons within each
to zero or pure imaginary eigenvalues) plays mathema%caI area (denoted by = 1,---,N) of the cortex;to is
cally essential role through this study and is clearly illus;, _ .. ) o o

; . X the time delay;a; parameterizes the strength of cortico-
trated in (1). Physiologically, on the other hand, (2) pro y.aj P 9

id {que insights into ob d EEG activiti h cortical activities;s; characterizes corticothalamic feed-
vides unique Insignts Into observe activities suc %Sack; v gives the damping ratez control the nonlinear
occurrence of epileptic seizure.

terms that are originated from the characteristics of neu-
ronal firing; andZ]kN:1 Ki(%(t) — X;(t)) represents inter-
action between local aregsandk. In this paper, how-
ever, we regard Eq. (1) one of typical coupled delay equa-
tions and don’t go into detail about its physiological view.
All through this paper, we take; andg; as variable pa-
Although time delay plays essential role in many sysrameters, while the other parameters are fixeg at -2,
tems [1], its analysis has been limited because of its infinite= —10, andt, = 8.
dimensionality [2]. If we direct our attention to the vicinity e defineA; andu;j = aj — A such thatA; gives a
of bifurcations, however, simplified equations which repcyitical value ofe; in a bifurcation (destabilization of the
resent essential phenomena are expected to be derived §ggilibrium pointx;(t) = 0) under the conditiofj = O.

cause damped modes are enslaved to excited modes @gs determined with the characteristic equation
can thus be "adiabatically eliminated” in such parameter

regions. The center manifold theory, as is well known, re- Ch(uj, ) = 2 —yd— (Aj+uj) - B =0. (2

alizes this idea mathematically [3]. We have proposed the

reduction method [4] based on the center manifold theoi@,(0,iQ;) = 0 determinesA; and pure imaginary eigen-

and perturbation theory [5] in the vicinity of Hopf bifur- valueiQ; at the Hopf bifurcation point, whil€(0,0) = 0

cation point with a corticothalamic model [6] as a sampleletermined\; at the pitchfork bifurcation point.

model. Well-known complex Ginzburg-Landau equation To extend the center manifold reduction to the neighbor-

of discrete version was derived from the original model. hood of the bifurcation point, we define three dynamical
In this paper, after a brief review of our reduction methogyariables &%) including the bifurcation parametes; as

in somewhat generalized form including pitchfork bifurca-x;(t) = xj(t),  Xj(t) = (1), x; = —e(x?(t))z, and rewrite

tion, two analytically solvable problems are demonstratedtq. (1) in matrix representation as below.

(1) relaxation processes from any initial conditions to the

1. Introduction

attractors and (2) amplitude death of coupled two oscilla- Xi(t) Xi(t) Xi(t —to)
tors due to "negative average bifurcation parameter” as well o X};(t) = A‘j’ x.é(t) + Aj1 X4(t — to)
as large frequency fierence. x2(t) x3(t) J.(t —tp)

i i
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N represents the duality between the center subspace and its
+F(x;(0) + Z KikG(x(®) = x; (1)), (3)  dual space. In the case of the Hopf bifurcation, where a
k=1 pair of complex conjugate eigenfunctiops and their dual
Y= appear belonging to pure imaginary eigenvalu€Q,

0 0 10 1 0 00 we transform basis and dual basis to the real Jordan normal
Aj=| Ay 04 Ap=1 A 0 04, @ form; g1 = Reg.), g = Im(g,), ¥* = 2Rey"), Y2 =
0 0O 0 0 O] —2Im(y).
. , 0 s | 3.2. General form of the reduced equations
Fxj(0) = | exiO[-05®))° + )T |, (5) e
0 State functiorx;’ can be decomposed to the center sub-
‘ space component;(t) and its opponertt; as below.
0 O — OO0 e U () = (W () O
G(Xk(t) _ X](t)) — l leg(t) _ X:]I.(t) (6) Xj (77) - (Dj(n)uj(t) + h]’ u](t) - <‘PJ(TI)’ XJ' (ﬂ)) (12)
0

In the vicinity of bifurcation point, the steady (not tran-
_ _ . sient) system statel? is so close to the center subspace
3. Reduction to Ginzburg-Landau equations thath; would be negligible. The Reduced equations under

. . this assumption are obtained in the form of
3.1. Basis and dual basis of the center subspace

We consider the following functional dérential equa- dgtuj(t) = Bjuj(t) + Nj +1j, (13)
tion:
d xO(n) (-to<n<0) _ (D (0
Oy = Nj = ¥j(0)F; (@;(0)uj(t)), (14)
TN { A%x<t)(0)+A1x(‘)( to) (7=0) 0 ( )

N

This equation corresponds to the linear noninteracting part | — w.(0) Y G, (@ (0)ur(t) — ®;(0)u;(t)). 15
of Eq. (3), index; omitted. xO(y) = x(t + 1), 7 € [~to, 0] =i ); i (OO - @O(9). (15)

represents a state function in a infinite dimensional phas
spaceC([—to, 0] — R®). Ansatzx®(n) = e''¢(z) leads the
following equations:

ehere matrixB; has the Jordan normal form satisfying the
following equations:

d dd; d¥;
- A0 - e e alo(0) =0, 40 —g). @) T =0 =B (16)

The base of the center subspace is obtained from this eq

tion with the associated eigenvalde A dual basey is i Complex Ginzburg-Landau equation

obtained as the adjoint problem of Eg. (8), that is, Applying the above equations for the Hopf bifurcation
0 a1 dy (2 = £iQ), Dj(n), ¥;(¢) andB; are obtained as below.
YOl - A e"0AT] =0, 2 = (8. ©)
¢ cosQjn sinQp 0
We can show that det] - A° — e*0Al] = Cy(0,1) and Qj(n) = | —QjsinQp QjcosQn 0 |, a7
therefore, Eq. (8) or Eq. (9) have nontrivial solutions with 0 0 1

the associated eigenvaludrom our definition ofA.
Conventionally, the basis and dual basis are writen in the

matrix form as (€)1 = (ajQ; + bjy) sinQ;é + (—ajy + bjQ;j) cosQ;¢
lﬂl \P](f)% = —Db; Sian§+?.j cosQ;é
02 ¥i(6); = (0, ~ayy) sinQi¢ — (byy +2jy) cosQ¢
O=[p1 ¢ ... ¢), V= 10)  ¥i(©); = ajsinQé + bj cosQ¢

wn
. . (18)
wheren denotes the dimension of the center subspace. We
determine® as®}(0) = 1 and®3 = 63 (Kronecker delta) wherea; = 1;/{(1;)* + (m;)2}, b; = m;/{(1;)® + (m;)?} with

and normalize¥ as(y?, ¢p) = 63, where lj = (—=y + BjtocosQjtp)/2, mj = (2Q; — Bjto SinQ;tg)/2,
and

%@sw@ZW@3T@3OW@3

W.¢) = w(O)%b(O) 0 9 o0
| Vo Rdodr 17 o 3] 0
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Using these results and returninggpagain fromx3, we
arrive at the following reduced equation:

G0 - | 4]

()
N

+ e+ D Ky(ug - uh)
k=1

Hja; Q;
—Qj +pjb; 0

(20)

a,
b

Furthermore, if we focus on the situation ti€at are nar-

4.1. To limit cycle

Using Eq. (21) with =0, amplitudgu(t)| can be obtained
as
lu(0)] lu(0)| ? -z
u(eo)| u(eo)| '
where|u(e)| = +/4u/(-3¢€) andt = (1/2)(—y + Bto)/u.

u(0) = ¢y, xOy +i(y?, xO) turn out to be 1 (cosine);(a+
ib) (Heaviside)u(0) = i(a + ib)(A + B)/Q (constant).

U1 = 1UO)| €77 (L= (o)) + @7)

rowly distributed, we can derive a further simplified equa- Fig.1 shows the time evolution calculated with the origi-

tion from Eq. (1) by the averaging method [3] as

. . 1 3
U;(t) = —iQju; + ¢ (é'uj + §€|Uj|2) uj + 1y, (22)
1 N
lj = EC]ZKjk(uk_uj)’ (22)
k=1

where we introduced a complex variabie= ujl + iuj2 and
Ci=a; + ibj.
3.4. Real Ginzburg-Landau equation

In the case of the pitchfork bifurcation & 0), we fined
Bj =0and

nal equation Eq. (1) (blue line) and the predicted amplitude
calculated with Eq. (27) (red line), in the case of cosine ini-
tial function (Top) and Heaviside initial function (Bottom).
The right side panels show the expanded view of the same
results as the left side one8.= —1.8, u = 0.012 are used
and initial functions are normalized &g0)| = 0.00492.
Difference between the analytical prediction and the nu-
merical result are immediately damped. Therefore, our pre-
diction is still €fective as a whole. Note that an appropriate
prediction cannot be obtained without the use of the projec-
tion u(0) = (wt, xOy + iy?, xOy,

0.06 0.06

o NNV VN VY

1 0 oo 0 1000 2000 3000 4000 oo 0 50 100 150 200
;=0 0], (23) . .
O 1 0.06 0.06
- -y + t 1 -y + t 0 0:02
‘Pj(ﬂ)=[ 7/( ')(/) ﬁ] 0) /( 70 ﬂj O) 1 } (24) X
" YVVVVVV VMV
With these results, we arrive at the bellow reduced equi :0:04
tl 0 n . -0.06 -0.06
i E /.l t t
uj(t) = m{(uj)z_(__;_)} uj + 1, (25)
1R ! Figure 1: Relaxation Process.The time evolution calculated
with the original equation Eq. (1) (blue line) and the pre-
N dicted amplitude calculated with Eq. (27) (red line), in the
| = 1 Z Kix (uk _ Uj). (26) case of cosine initial function (Top) and Heaviside initial
—Yj +Bjto & function (Bottom). The right side panels show the ex-

4. Relaxation process

panded view of the same results as the left side ones.

4.2. To attractive fixed point

The reduced equations elucidate some essential proper-

ties involved in the original model in an analytical manner.
For the first example, let us discuss the relaxation process
using (1)cosine functiox©@(n) = cosQn), (2)Heaviside
function xX9(;) = 0,7 < 0, x9(0) = 1, and (3)constant

function x9(;;) = 1 as initial functions. Note thax is

Eqg. (25) withl=0 is integrated as

uo
u(e)

1
2

ﬂ)Z B

) = uO)e™t 11~ (9 + (s (28)

whereu(eo) = Ju/(=€), 7 = (1/2)(~y + Blo)/u. u(0) =

the same for all the case &t= 0, but diferent in the past (y?, x©) results in ¢y + Bsinwto/w)/(—y + Bto) (cosine),
(t < 0). Therefore, relaxation process varies case by casey/(y — Sto) (Heaviside), 1 (constant).
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5. Amplitude death of 2-Body problem

5.1. Negative average aju-K) 0 aK 0
| bju-K) O biK 0
Let us consider the 2-Body problem of Eq. (21) in the AM = ak 0 au-K) 0 (32)
case ofQQ; = Q, = Q. The matrix corresponding to the b K 0 b(u-K) 0
linear part of Eq. (21) under this condition results in
2+ el — K) Lok The right eigenvectors dfly are
—iQ+ 5c(ug — 5C
M= ch -iQ+ %C(,uz -K) | (29) 1 1 0 O
U= 1l1i -i 00 (33)
The following inequalities must hold if two eigenvalues of T 4\2(0 0 1 1¢p
M have both negative real part: 0 0 i -i
<0, K> Hp2 (30) and the left eigenvectotd” are just Hermite conjugate of
M1+ 2 U. The exact calculation for eigenvalues of M is compli-

L . : - . cated in this case, but the perturbed eigenvaludd afin
Fig.2 illustrates this analytical prediction by numerical cal-be obtained from the diagonal components.sMU as
culation of Eq. (1)Q = 0.25 is used. 9 P

below.
1+, = (0.01)+(-0.02) =-0.01 1+, = (0.01)+(-0.005) = 0.005 a; . b i .
4= Su-Rile - Ju-0| (=12, @4
k=0 A /\ /\ A 0 A A A A Hence, ifK exceeds., the real part oft; becomes nega-
\/ \/ \/ \/ J \/ \/ \/ tive, which implies the possibility of the amplitude death
005 phenomenon. See [4] for its numerical confirmation.
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