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Abstract—A coupled system of delay differential equa-
tions motivated through the corticothalamic dynamics
is systematically reduced to the complex and the real
Ginzburg-Landau equations. Two analytically solvable
problems are discussed; (1) relaxation process from any
initial state to the corresponding attractor (limit cycles or
attractive fixed point) and (2) amplitude death of coupled
two oscillators due to ”negative average bifurcation param-
eter” as well as due to large frequency difference. Projec-
tion from infinite dimensional phase space to the center
subspace (subspace spanned by eigenfunctions belonging
to zero or pure imaginary eigenvalues) plays mathemati-
cally essential role through this study and is clearly illus-
trated in (1). Physiologically, on the other hand, (2) pro-
vides unique insights into observed EEG activities such as
occurrence of epileptic seizure.

1. Introduction

Although time delay plays essential role in many sys-
tems [1], its analysis has been limited because of its infinite
dimensionality [2]. If we direct our attention to the vicinity
of bifurcations, however, simplified equations which rep-
resent essential phenomena are expected to be derived be-
cause damped modes are enslaved to excited modes and
can thus be ”adiabatically eliminated” in such parameter
regions. The center manifold theory, as is well known, re-
alizes this idea mathematically [3]. We have proposed the
reduction method [4] based on the center manifold theory
and perturbation theory [5] in the vicinity of Hopf bifur-
cation point with a corticothalamic model [6] as a sample
model. Well-known complex Ginzburg-Landau equation
of discrete version was derived from the original model.

In this paper, after a brief review of our reduction method
in somewhat generalized form including pitchfork bifurca-
tion, two analytically solvable problems are demonstrated;
(1) relaxation processes from any initial conditions to the
attractors and (2) amplitude death of coupled two oscilla-
tors due to ”negative average bifurcation parameter” as well
as large frequency difference.

2. Sample model to be reduced

In the present study, we analyze the following equa-
tions originated from Kim and Robinson’s corticothalamic
model [6]:

ẍ j(t) = γẋ j(t) + α j x j(t) + β j x j(t − t0) + ϵx j(t)
3

+

N∑
k=1

K jk(xk(t) − x j(t)), (1)

where x j(t) is a mean firing rate of neurons within each
local area (denoted byj = 1, · · · ,N) of the cortex;t0 is
the time delay;α j parameterizes the strength of cortico-
cortical activities;β j characterizes corticothalamic feed-
back; γ gives the damping rate;ϵ control the nonlinear
terms that are originated from the characteristics of neu-
ronal firing; and

∑N
k=1 K jk(xk(t) − x j(t)) represents inter-

action between local areasj and k. In this paper, how-
ever, we regard Eq. (1) one of typical coupled delay equa-
tions and don’t go into detail about its physiological view.
All through this paper, we takeα j andβ j as variable pa-
rameters, while the other parameters are fixed atγ = −2,
ϵ = −10, andt0 = 8.

We defineA j and µ j ≡ α j − A j such thatA j gives a
critical value ofα j in a bifurcation (destabilization of the
equilibrium pointx j(t) ≡ 0) under the conditionK jk = 0.
A j is determined with the characteristic equation

Ch(µ j , λ) ≡ λ2 − γλ − (A j + µ j) − β je
−λt0 = 0. (2)

Ch(0, iΩ j) = 0 determinesA j and pure imaginary eigen-
valueiΩ j at the Hopf bifurcation point, whileCh(0,0) = 0
determinesA j at the pitchfork bifurcation point.

To extend the center manifold reduction to the neighbor-
hood of the bifurcation point, we define three dynamical
variables (x1−3

j ) including the bifurcation parameterµ j as

x j(t) = x1
j (t), ẋ j(t) = x2

j (t), µ j = −ϵ(x3
j (t))

2, and rewrite
Eq. (1) in matrix representation as below.

d
dt


x1

j (t)
x2

j (t)
x3

j (t)

 = A0
j


x1

j (t)
x2

j (t)
x3

j (t)

 + A1
j


x1

j (t − t0)
x2

j (t − t0)
x3

j (t − t0)
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+F(x j(t)) +
N∑

k=1

K jkG(xk(t) − x j(t)), (3)

A0
j =

 0 1 0
A j γ 0
0 0 0

 , A1
j =

 0 0 0
β j 0 0
0 0 0

 , (4)

F(x j(t)) =


0

ϵx1
j (t)[−(x3

j (t))
2 + (x1

j (t))
2]

0

 , (5)

G(xk(t) − x j(t)) =


0

x1
k(t) − x1

j (t)
0

 . (6)

3. Reduction to Ginzburg-Landau equations

3.1. Basis and dual basis of the center subspace

We consider the following functional differential equa-
tion:

d
dt

x(t)(η) =

{ d
dηx(t)(η) (−t0 < η < 0)
A0x(t)(0)+ A1x(t)(−t0) (η = 0)

(7)

This equation corresponds to the linear noninteracting part
of Eq. (3), indexj omitted. x(t)(η) ≡ x(t + η), η ∈ [−t0,0]
represents a state function in a infinite dimensional phase
spaceC([−t0, 0] → R3). Ansatzx(t)(η) = eλtϕ(η) leads the
following equations:

[λI − A0 − e−λt0A1]ϕ(0) = 0,
dϕ(η)

dη
= λϕ(η). (8)

The base of the center subspace is obtained from this equa-
tion with the associated eigenvalueλ. A dual baseψ is
obtained as the adjoint problem of Eq. (8), that is,

ψ(0)[λI − A0 − e−λt0A1] = 0,
dψ
dξ
= −λψ(ξ). (9)

We can show that det[λI − A0 − e−λt0A1] = Ch(0, λ) and
therefore, Eq. (8) or Eq. (9) have nontrivial solutions with
the associated eigenvalueλ from our definition ofA.

Conventionally, the basis and dual basis are writen in the
matrix form as

Φ ≡ [ϕ1 ϕ2 . . . ϕn], Ψ ≡


ψ1

ψ2

...
ψn

 , (10)

wheren denotes the dimension of the center subspace. We
determineΦ asΦ1

1(0) = 1 andΦa
n = δ

a
n (Kronecker delta)

and normalizeΨ as⟨ψa, ϕb⟩ = δa
b, where

⟨ψ, ϕ⟩ ≡ ψ(0)ϕ(0)

+

∫ 0

−t0

ψ(σ + t0)A1ϕ(σ)dσ (11)

represents the duality between the center subspace and its
dual space. In the case of the Hopf bifurcation, where a
pair of complex conjugate eigenfunctionsϕ± and their dual
ψ± appear belonging to pure imaginary eigenvalues±iΩ,
we transform basis and dual basis to the real Jordan normal
form; ϕ1 ≡ Re(ϕ+), ϕ2 ≡ Im(ϕ+), ψ1 ≡ 2Re(ψ+), ψ2 ≡
−2Im(ψ+).

3.2. General form of the reduced equations

State functionx(t)
j can be decomposed to the center sub-

space componentu j(t) and its opponenth j as below.

x(t)
j (η) = Φ j(η)u j(t) + h j , u j(t) = ⟨Ψ j(η), x

(t)
j (η)⟩ (12)

In the vicinity of bifurcation point, the steady (not tran-
sient) system statex(t)

j is so close to the center subspace
thath j would be negligible. The Reduced equations under
this assumption are obtained in the form of

d
dt

u j(t) = Bju j(t) + N j + I j , (13)

N j = Ψ j(0)F j

(
Φ j(0)u j(t)

)
, (14)

I j = Ψ j(0)
N∑

k=1

G jk

(
Φk(0)uk(t) − Φ j(0)u j(t)

)
, (15)

where matrixBj has the Jordan normal form satisfying the
following equations:

dΦ j

dη
= Φ j Bj ,

dΨ j

dξ
= −Bjψ j . (16)

3.3. Complex Ginzburg-Landau equation

Applying the above equations for the Hopf bifurcation
(λ = ±iΩ), Φ j(η), Ψ j(ξ) andBj are obtained as below.

Φ j(η) =

 cosΩ jη sinΩ jη 0
−Ω j sinΩ jη Ω j cosΩ jη 0

0 0 1

 , (17)

Ψ j(ξ)1
1 = (a jΩ j + b jγ) sinΩ jξ + (−a jγ + b jΩ j) cosΩ jξ

Ψ j(ξ)1
2 = −b j sinΩ jξ + a j cosΩ jξ

Ψ j(ξ)2
1 = (b jΩ j − a jγ) sinΩ jξ − (b jγ + a jΩ j) cosΩ jξ

Ψ j(ξ)2
2 = a j sinΩ jξ + b j cosΩ jξ

Ψ j(ξ)1
3 = Ψ j(ξ)2

3 = Ψ j(ξ)3
1 = Ψ j(ξ)3

2 = 0, Ψ j(ξ)3
3 = 1,

(18)

wherea j = l j/{(l j)2 + (mj)2}, b j = mj/{(l j)2 + (mj)2} with
l j = (−γ + β j t0 cosΩ j t0)/2, mj = (2Ω j − β j t0 sinΩ j t0)/2,
and

B =

 0 Ω j 0
−Ω j 0 0

0 0 0

 . (19)
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Using these results and returning toµ j again fromx3
j , we

arrive at the following reduced equation:[
u̇1

j (t)
u̇2

j (t)

]
=

[
µ ja j Ω j

−Ω j + µ jb j 0

] [
u1

j

u2
j

]
+

ϵ(u1
j )

3 +

N∑
k=1

K jk(u1
k − u1

j )

 [ a j

b j

]
(20)

Furthermore, if we focus on the situation thatΩ j are nar-
rowly distributed, we can derive a further simplified equa-
tion from Eq. (1) by the averaging method [3] as

u̇ j(t) = −iΩ ju j + c j

(
1
2
µ j +

3
8
ϵ|u j |2

)
u j + I j , (21)

I j =
1
2

c j

N∑
k=1

K jk

(
uk − u j

)
, (22)

where we introduced a complex variableu j = u1
j + iu2

j and
c j = a j + ib j .

3.4. Real Ginzburg-Landau equation

In the case of the pitchfork bifurcation (λ = 0), we fined
Bj = 0 and

Φ j(ξ) =

 1 0
0 0
0 1

 , (23)

Ψ j(η) =

[
−γ/(−γ + β j t0) 1/(−γ + β j t0) 0

0 0 1

]
. (24)

With these results, we arrive at the bellow reduced equa-
tion.

u̇ j(t) =
ϵ j

−γ j + β j t0

{
(u j)

2 − (
µ j

−ϵ j
)

}
u j + I j , (25)

I j =
1

−γ j + β j t0

N∑
k=1

K jk

(
uk − u j

)
. (26)

4. Relaxation process

The reduced equations elucidate some essential proper-
ties involved in the original model in an analytical manner.
For the first example, let us discuss the relaxation process
using (1)cosine functionx(0)(η) = cos(Ωη), (2)Heaviside
function x(0)(η) = 0, η < 0, x(0)(0) = 1, and (3)constant
function x(0)(η) = 1 as initial functions. Note thatx is
the same for all the case att = 0, but different in the past
(t < 0). Therefore, relaxation process varies case by case.

4.1. To limit cycle

Using Eq. (21) withI=0, amplitude|u(t)| can be obtained
as

|u(t)| = |u(0)|
[
e−

t
τ {1− (

|u(0)|
|u(∞)| )

2} + (
|u(0)|
|u(∞)| )

2
]− 1

2

. (27)

where |u(∞)| =
√

4µ/(−3ϵ) and τ = (1/2)(−γ + βt0)/µ.
u(0) = ⟨ψ1, x(0)⟩+ i⟨ψ2, x(0)⟩ turn out to be 1 (cosine),−(a+
ib) (Heaviside),u(0) = i(a+ ib)(A+ β)/Ω (constant).

Fig.1 shows the time evolution calculated with the origi-
nal equation Eq. (1) (blue line) and the predicted amplitude
calculated with Eq. (27) (red line), in the case of cosine ini-
tial function (Top) and Heaviside initial function (Bottom).
The right side panels show the expanded view of the same
results as the left side ones.β = −1.8, µ = 0.012 are used
and initial functions are normalized as|u(0)| = 0.00492.
Difference between the analytical prediction and the nu-
merical result are immediately damped. Therefore, our pre-
diction is still effective as a whole. Note that an appropriate
prediction cannot be obtained without the use of the projec-
tion u(0) = ⟨ψ1, x(0)⟩ + i⟨ψ2, x(0)⟩.

Figure 1: Relaxation Process.The time evolution calculated
with the original equation Eq. (1) (blue line) and the pre-
dicted amplitude calculated with Eq. (27) (red line), in the
case of cosine initial function (Top) and Heaviside initial
function (Bottom). The right side panels show the ex-
panded view of the same results as the left side ones.

4.2. To attractive fixed point

Eq. (25) withI=0 is integrated as

u(t) = u(0)
[
e−

t
τ {1− (

u(0)
u(∞)

)2} + (
u(0)
u(∞)

)2
]− 1

2

, (28)

whereu(∞) =
√
µ/(−ϵ), τ = (1/2)(−γ + βt0)/µ. u(0) =

⟨ψ1, x(0)⟩ results in (−γ + β sinωt0/ω)/(−γ + βt0) (cosine),
γ/(γ − βt0) (Heaviside), 1 (constant).

- 917 -



5. Amplitude death of 2-Body problem

5.1. Negative averageµ

Let us consider the 2-Body problem of Eq. (21) in the
case ofΩ1 = Ω2 = Ω. The matrix corresponding to the
linear part of Eq. (21) under this condition results in

M =

[
−iΩ + 1

2c(µ1 − K) 1
2cK

1
2cK −iΩ + 1

2c(µ2 − K)

]
. (29)

The following inequalities must hold if two eigenvalues of
M have both negative real part:

µ1 + µ2 < 0, K >
µ1µ2

µ1 + µ2
. (30)

Fig.2 illustrates this analytical prediction by numerical cal-
culation of Eq. (1).Ω = 0.25 is used.

Figure 2: Amplitude death due to negative averageµ in
2-body problem. Sufficiently strong connection such that
K > µ1µ2/(µ1 + µ2) suppresses oscillation if (µ1 + µ2) is
negative (left), but doesn’t positive (right).

5.2. Large frequency difference

Let us consider the case ofµ1 = µ2 = µ in turn. Ampli-
tude death would occur when difference betweenΩ1 and
Ω2 is sufficiently large. The relevant matrix can be decom-
posed asM = M0 + ∆M with

M0 =


0 Ω j 0 0
−Ω j 0 0 0

0 0 0 Ωk

0 0 −Ωk 0

 , (31)

∆M =


a j(µ − K) 0 a jK 0
b j(µ − K) 0 b jK 0

akK 0 ak(µ − K) 0
bkK 0 bk(µ − K) 0

 . (32)

The right eigenvectors ofM0 are

U =
1
√

2


1 1 0 0
i −i 0 0
0 0 1 1
0 0 i −i

 , (33)

and the left eigenvectorsU∗ are just Hermite conjugate of
U. The exact calculation for eigenvalues of M is compli-
cated in this case, but the perturbed eigenvalues ofM can
be obtained from the diagonal components ofU∗MU as
below.

λ j ≃
a j

2
(µ − K) ± i

[
Ω j −

b j

2
(µ − K)

]
( j = 1,2). (34)

Hence, ifK exceedsµ, the real part ofλ j becomes nega-
tive, which implies the possibility of the amplitude death
phenomenon. See [4] for its numerical confirmation.
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