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Abstract – The evaluation of unpredictability of chaotic 
laser outputs is important for the applications of physical 
random number generation. We evaluate the entropy rate of 
chaotic temporal waveforms generated from a 
semiconductor laser using the (𝜀, 𝜏) entropy and the sample 
entropy in numerical simulations. We also calculate the 
Kolmogorov-Sinai entropy to show the validity of the 
entropy measurement. 
 
1. Introduction 

Random number generators are necessary for 
engineering applications, such as information security and 
numerical simulation. Pseudorandom number generators 
are based on deterministic algorithm, and they can 
generate fast random bit sequences. However, 
pseudorandom numbers are completely determined by a 
seed which is an initial value, and they have periodicity 
and reproducibility. On the contrary, physical random 
number generators are based on physical phenomena, and 
the sequences generated from physical random number 
generators are unpredictable and irreproducible. However, 
the speed of physical random number generators is 
relatively low. 

To enhance the generation speed, physical random 
number generators based on chaotic semiconductor lasers 
have been proposed [1], where physical random number 
generation has been achieved at a rate of gigabit per second. 
Several post-processing methods have been reported to 
improve the randomness of generated bit sequences, such 
as least significant bit (LSB) extraction [2] and bit-order 
reversal [3]. Using these post-processing methods, the 
speed of random number generation based on chaotic 
semiconductor lasers can be improved at a rate up to terabit 
per second [4]. 
 There is another issue that the speed of random number 
generation may exceed the rate of entropy (uncertainty) 
production in physical entropy sources. Therefore, it is 
necessary to evaluate the entropy generation rate of 
physical random number generators to ensure the 
generation of physical random bit sequences with 
unpredictability [5]. 
 Kolmogorov-Sinai (KS) entropy is a standard measure 
of entropy in dynamical systems, and it is calculated from 
the sum of positive Lyapunov exponents [6]. It is necessary 
to use a numerical model to calculate the KS entropy, and 

the KS entropy cannot be directly applied for the analysis 
of experimentally measured temporal waveforms 
generated from physical entropy sources. 

The (𝜀, 𝜏) entropy has been reported as a measure of 
entropy rate, which can be calculated from temporal 
waveforms [7,8]. The calculation of the (𝜀, 𝜏) entropy is 
based on how many points exist in an ε-size hypercube in 
a high dimensional attractor, which is reconstructed from 
the temporal waveforms sampled at the time interval 𝜏 
using time-delayed embedding. It has been known that the 
limit of the (𝜀, 𝜏) entropy approaches the KS entropy (𝜀 →
0, 𝜏 → 0). 

The sample entropy has also been reported as another 
measure of entropy rate, which can be directly calculated 
from temporal waveforms [9]. The sample entropy has 
been used in medical fields [10], and the validity of the 
sample entropy in chaotic semiconductor lasers has not 
been reported yet. The sample entropy is directly 
calculated from one-dimensional temporal waveforms, 
and the sample entropy can reduce the calculation time 
rather than the (𝜀, 𝜏)  entropy, which is calculated from a 
high-dimensional attractor. 

In this study, we calculate the sample entropy from 
chaotic temporal waveforms in unidirectionally coupled 
semiconductor lasers, and compare the sample entropy with 
the ( 𝜀, 𝜏 ) entropy in numerical simulations. We also 
calculate the KS entropy, which is estimated from the 
linearized equations of the numerical model, and show the 
validity of the estimation of the sample entropy and the 
(𝜀, 𝜏) entropy by comparing with the KS entropy. 
 

 
 
 
 
 

 
Fig. 1 Model for unidirectionally coupled two semiconductor 

lasers. 
  
2. Numerical model of semiconductor lasers 

In this section, we explain our numerical model of 
unidirectionally coupled semiconductor lasers. Figure 1 
shows the model for unidirectionally coupled two 
semiconductor lasers. The optical output of the laser 1 is 
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injected into the laser 2. It has been known that the laser 2 
can produce chaotic dynamics by adjusting the optical 
frequency detuning between the two lasers and the coupling 
strength of the optical injection signal from the laser 1 to 2. 

The dynamics of the semiconductor laser is described by 
the Lang-Kobayashi equations [11]. The model of the laser 
2 is described as follows, 
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Where 𝐸!(𝑡) is the complex electric field, and 𝑁!(𝑡) is the 
carrier density for the laser 2. The optical intensity 𝐼(𝑡) and 
the optical phase 𝜙(𝑡)  are calculated from the complex 
electric field 𝐸(𝑡) = 𝐸+, + 𝑖𝐸-., where 𝐼(𝑡) = 𝐸+,! + 𝐸-.!  
and 𝜙(𝑡) =	arctan(𝐸-./𝐸+,). 𝐺" is the gain coefficient, 𝛼 
is the linewidth enhancement factor, 𝑁#  is the carrier 
density at transparency, γ is the gain saturation coefficient, 
𝜏* is the carrier lifetime, and 𝜏$ is the photon lifetime. 𝐽! is 
the injection current for the laser 2. We set  𝐽! = 1.36𝐽/0 
where 𝐽/0 is the injection current at the lasing threshold. 𝐸) 
is the electric field amplitude of the laser 1. 𝐸) is calculated 
from a steady-state solution of the Lang-Kobayashi 
equations without optical injection [12]. We set the initial 
optical frequency detuning (∆𝑓	 = 	∆𝜔/2𝜋	 = 	 (𝜔) 	−
	𝜔!)/2𝜋) to 1.30 GHz, where 𝜔) = 1.226 × 10)1 𝑠2). The 
injection strength is varied to observe different temporal 
dynamics of the laser 2. The other parameter values are 
given in [12].   

Figure 2 shows the numerical results of the temporal 
waveforms of the optical intensity 𝐼(𝑡) calculated from Eqs. 
(1) and (2). A quasiperiodic oscillation is observed for 
𝜅%&' = 9.0	𝑛𝑠2) in Fig. 2(a). As 𝜅%&'  increased, a chaotic 
temporal waveform is obtained for 𝜅%&' = 10.0	𝑛𝑠2) , as 
shown in Fig. 2(b). 

(a) (b) 

 
Figure 2: Numerical results of temporal waveforms of 
the laser intensity for different optical injection strengths 
𝜅%&'. (a) 𝜅%&' = 9.0	𝑛𝑠2), and (b) 𝜅%&' = 10.0	𝑛𝑠2). 

  
To calculate the KS entropy, we derive the linearized 

equations from the original rate equations of Eqs. (1) and 
(2). We can calculate the Lyapunov spectrum from the 

evolution of perturbations by integrating both the original 
and linearized equations. The KS entropy is calculated 
from the sum of positive Lyapunov exponents as follows 
[12], 
 

 

ℎ3* = L 𝜆%
%|56#

		 
 
(3) 

 
3. Calculation method of sample entropy 

The dynamics of the laser 2 can be represented in three-
dimensional phase space constructed from the optical 
intensity 𝐼(𝑡), the optical phase Φ(𝑡), and the carrier density 
𝑁(𝑡) in the Lang-Kobayashi equations. In experiment, 𝐼(𝑡) 
can be measured easily, whereas it is difficult to measure 
Φ(t) and 𝑁(𝑡) directly. Therefore, we calculate the sample 
entropy from the temporal waveforms of the optical 
intensity 𝐼(𝑡). 

Figure 3 shows the concept of the calculation of the 
sample entropy. We use a chaotic temporal waveform of the 
optical intensity sampled at a sampling time interval 𝜏. The 
discrete time 𝑡 is represented as	𝑖𝜏	(𝑖 = 1,2, …… , 𝐿, where 
𝐿  is the length of the temporal waveform). Next, we 
randomly select a point in the temporal waveform and 
prepare a reference vector 𝑿𝒊. The reference vector 𝑿𝒊 is 
described as follows, 
 
𝑿𝒊 = Q𝑥(𝑖𝜏), 𝑥<(𝑖 + 1)𝜏?, …… , 𝑥((𝑖 + 𝑑 − 1)𝜏)S (4) 

 
We calculate the probability of the existence of the vectors 
which are similar to the reference vector 𝑿𝒊 in the temporal 
waveform. The probability is described as follows, 
 

𝐴8 = log! X
1
𝑅L𝐴%

+

%9)

Z 
 

(5) 

 
where 𝑅  is the number of the reference vector 𝑿𝒊 .  
𝐴% 	represents the probability of the existence of the vectors 
within the distance of 𝜀  from the reference vector. The 
probability is averaged over 𝑅 points. The reference vector 
𝑿𝒊  is randomly selected for efficient calculations in this 
method. The entropy rate ℎ:;.$ is calculated from 𝐴8	and  
𝐴8<)	as follows,  
 

 

ℎ:;.$ = −
1
𝜏
(𝐴8<) − 𝐴8) 

 
(6) 

 

 
Figure 3: Concept of the calculation of the sample 
entropy from temporal waveforms. 
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 Although the sample entropy is very similar to the (𝜀, 𝜏) 
entropy, there are several differences between the two 
methods. First, the sample entropy is directly calculated 
from temporal waveforms, whereas the (𝜀, 𝜏) entropy is 
calculated from vectors on a high-dimensional attractor 
reconstructed from temporal waveforms. Therefore, the 
calculation of the sample entropy is less time-consuming 
than that of the (𝜀, 𝜏) entropy. In addition, the probability is 
averaged over the reference vectors first, and the natural 
logarithm of the averaged probability is calculated for the 
sample entropy. In contrast, the natural logarithm of the 
probability is calculated first, and the average is taken over 
the reference vectors for the (𝜀, 𝜏) entropy. Also, the sample 
entropy does not include self-counting of the reference 
vector, while the (𝜀, 𝜏) entropy includes self-counting of the 
reference vector to avoid the zero calculation of the natural 
logarithm of the probability.  

We use the data length L of 1 Mega points, the number 
of reference points 𝑅 of 5000 points, and the sampling 
interval 𝜏 of 20 ps (50 GHz). We use 𝜀 normalized by the 
standard deviation of temporal waveforms, because the 
standard deviation is changed for different dynamics and 
the amplitude of the temporal waveforms strongly affects 
the estimation of the entropy. We set 𝜀 = σ 2=! , where σ is 
the standard deviation, and we change	𝜀: . 
 

 
Figure 4: Numerical results of the sample entropy as a 
function of 𝑑 for different 𝜀:. The dotted line indicates 
the KS entropy. 

 
4. Numerical results of the sample entropy 

For the calculation of the sample entropy, it is necessary 
to set appropriate values of 𝜀:, and 𝑑. We investigate the 
dependence of the entropy on 𝜀: and 𝑑. Figure 4 shows the 
sample entropy as a function of 𝑑  for different 𝜀: . For 
small 𝑑, a sufficiently long vector is not used from the 
temporal waveform, and the entropy is overestimated. For 

large 𝑑, the entropy almost converges at a fixed value for 
small 𝜀:  and gradually approaches the value of the KS 
entropy (the dotted line in Fig. 4). Therefore, it is found 
that a large 𝑑 and a small 𝜀: are suitable for the evaluation 
of the sample entropy. We thus select the value of 𝑑 = 100  
and 𝜀: = 0 for the evaluation of the sample entropy in Fig. 
4. 
 
5. Comparison between the sample entropy and the 

KS entropy 
To investigate the validity of the calculation of the 

sample entropy, we compare the sample entropy with the 
KS entropy. Figure 5(a) shows the sample entropy (the red 
curve) and the KS entropy (the black curve) as a function 
of the injection strength 𝜅%&'. For comparison, the values 
of the sample entropy agree well with those of the KS 
entropy. Figure 5(b) shows the correlation plot between the 
sample entropy and the KS entropy, obtained from the data 
in Fig. 5(a). Very high correlation is obtained with the 
correlation value of 0.961. From these results, we confirm 
that the sample entropy matches the KS entropy well, and 
the sample entropy is a good measure for the entropy of 
chaotic temporal waveforms. 

 
(a) (b) 

 
Figure 5: (a) Numerical results of the sample entropy 
(the red curve) and the KS entropy (the black curve) as 
a function of the injection strength 𝜅%&' . (b) Correlation 
plot between the sample entropy and the KS entropy 
shown in Fig. 5(a). 
 

 
6. Comparison between the (𝜺, 𝝉) entropy and the 

sample entropy 
In this section, we investigate the sample entropy and 

the (𝜀, 𝜏) entropy, which are compared with the KS entropy. 
Figure 6 shows the cross-correlation values between the 
sample entropy and the KS entropy, and between the (𝜀, 𝜏) 
entropy and the KS entropy, as a function of the data length 
𝑁. As the data length 𝑁 is decreased, the correlation values 
decrease for the (𝜀, 𝜏) entropy. However, high correlation 
values are maintained for the sample entropy for small 𝑁. 
When the data length is set to 104 points, the correlation 
values between the sample entropy and the KS entropy is 
0.948, and the correlation value between the (𝜀, 𝜏) entropy 
and the KS entropy is 0.591. Therefore, we can estimate 
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the entropy accurately using the sample entropy with a 
shorter data length 𝑁 than that for the (𝜀, 𝜏)	entropy. 
 

 
Figure 6:  Cross-correlation values between the sample 
entropy and the KS entropy (the red curve), and 
between the (𝜀, 𝜏) entropy and the KS entropy (the black 
curve) as a function of the data length 𝑁.  
 

7. Conclusions 
We calculated the sample entropy from the temporal 

waveforms of the optical intensity in unidirectionally 
coupled semiconductor lasers in numerical simulation. We 
compared the sample entropy with the KS entropy, which 
was calculated from the linearized equations of the original 
model equations for the semiconductor lasers, and showed 
the validity of the calculation of the sample entropy. We 
also calculated the correlation between the sample entropy 
and the KS entropy, and between the (𝜀, 𝜏) entropy and the 
KS entropy. We found that the sample entropy can be 
calculated more precisely with shorter data length than that 
for the (𝜀, 𝜏)	entropy.  
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