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Abstract – The optical frequency dynamics in chaotic 

laser outputs has been extracted from the laser intensity of 

low frequency fluctuations using optical heterodyne 

detection. We experimentally investigate the extraction of 

chaotic frequency dynamics at fast oscillations over GHz. 

We compare the characteristics of the optical frequency 

dynamics with that of the optical intensity dynamics. The 

optical frequency dynamics can be used to perform fast 

physical random number generation. 

 

1. Introduction 

 

Chaotic fluctuations of optical intensity outputs have 

been observed in a semiconductor laser with time-delayed 

optical feedback. These chaotic fluctuations have been used 

for engineering applications such as optical secure 

communication [1], reservoir computing [2], and fast 

physical random number generation [3,4]. 

Fast physical random number generation using chaotic 

lasers has been proposed in 2008 [3]. Various studies on 

fast physical random number generation using chaotic 

lasers have been conducted. Most of the studies are based 

on the generation of random numbers using chaotic 

fluctuations of the optical intensity. However, chaotic 

oscillations of the optical frequency can also be utilized. 

We expect that chaotic frequency dynamics may be useful 

for random number generation and the generation speed of 

random numbers could be enhanced by using both intensity 

and frequency dynamics in parallel.  

The optical frequency of chaotic lasers cannot be 

detected directly because the frequency fluctuation is too 

fast in the order of several hundreds of THz. One of the 

detection schemes of the optical frequency of chaotic lasers 

is based on optical heterodyne detection and sliding fast 

Fourier transformation (FFT) for measuring the low 

frequency fluctuations (LFF) [5,6]. LFF shows slow power 

dropouts at frequencies from a few MHz to hundreds of 

MHz [7] while chaotic oscillation shows the oscillation 

frequency over GHz.  

In the optical heterodyne detection method, the initial 

optical frequency detuning Δ𝑓𝑖𝑛𝑖  between a chaotic laser 

and a reference laser needs to be set to Δ𝑓𝑖𝑛𝑖 ≫ 𝑓𝑐, where 𝑓𝑐 

is the frequency of the chaotic laser in the radio-frequency 

range. However, this condition for extracting chaotic 

frequency dynamics cannot be satisfied in experiment 

because of bandwidth limitation of experimental apparatus. 

Moreover, the random number generation using frequency 

dynamics extracted by the heterodyne scheme reduces the 

speed of random number generation, because Fast Fourier 

Transform (FFT) is time-consuming.  

Instead of using the optical heterodyne detection, we use 

optical coherent detection for extracting the frequency 

dynamics and phase fluctuations [8]. Optical coherent 

detection has been mainly developed in the field of 

coherent optical communications. The complex electric 

field of lasers can be extracted by using optical coherent 

detection, therefore, the frequency and phase dynamics can 

also be extracted from the complex electric field. However, 

the construction of complex electric field that fluctuates 

over GHz has not been reported yet in chaotic 

semiconductor lasers with time-delayed optical feedback. 

It is necessary to observe the frequency dynamics of 

chaotic lasers for the applications of random number 

generation using the frequency dynamics. 

 In this study, we extract the temporal dynamics of optical 

frequency that fluctuates chaotically over GHz using the 

coherent detection scheme in a semiconductor laser with 

time-delayed optical feedback. We numerically investigate 

the conditions for observing frequency dynamics on the 

laser parameters. We also investigate the characteristics of 

optical frequency dynamics, compared with the intensity 

dynamics. 

 

2. Numerical model of semiconductor laser with time-

delayed optical feedback 

 

Semiconductor lasers with time-delayed optical feedback 

can produce chaotic fluctuations over GHz. The dynamics 

of the semiconductor laser with time-delayed optical 

feedback is described by the Lang-Kobayashi equations [9], 

which are shown in the following equations, 
 

𝑑𝐸(𝑡)

𝑑𝑡
=

1 + 𝑖𝛼

2
[
𝐺𝑁[𝑁(𝑡) − 𝑁0]

1 + 𝜀|𝐸(𝑡)|2
−

1

𝜏𝑝

] 𝐸(𝑡) 

                 +𝜅𝐸(𝑡 − 𝜏) exp(−𝑖2𝜋𝑓0𝑡), 

(1) 

  

𝑑𝑁(𝑡)

𝑑𝑡
= 𝐽 −

𝑁(𝑡)

𝜏𝑠

−
𝐺𝑁[𝑁(𝑡) − 𝑁0]

1 + 𝜀|𝐸(𝑡)|2
|𝐸(𝑡)|2, (2) 

 

where 𝐸(𝑡) is the complex electric-field amplitude, 𝑁(𝑡) is 

the carrier density, 𝐺𝑁  is the differential gain, 𝑁0  is the 

carrier number at transparency, 𝑓0  is the solitary laser 

frequency, 𝜀  is the gain saturation coefficient, 𝛼  is the 

linewidth enhancement factor, 𝐽 is the injection current, 𝜏 
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is the delay time in the external cavity for optical feedback, 

𝜏𝑝 and 𝜏𝑠 are the photon and carrier life times, respectively, 

and 𝜅 is the feedback strength. 

 

3. Extraction method of optical frequency dynamics 

using optical coherent detection 

  

The optical coherent detection scheme can restore the 

complex electric field of the laser output, and extract the 

optical phase of the laser output. Figure 1 shows a model 

for the optical coherent detection scheme in a 

semiconductor laser with time-delayed optical feedback [8]. 

The laser 1 has optical feedback to generate chaotic 

fluctuations and the laser 2 is a frequency-stabilized laser 

without optical feedback. The laser 2 is called Local 

Oscillator (LO). The complex electric field amplitudes of 

the laser 1 (𝐸𝑠) and the laser 2 (𝐸𝑙) are represented as the 

following equations, 
 

𝐸𝑐(𝑡) = 𝐴𝑐(𝑡) exp(𝑖𝜔𝑐𝑡), (3) 

𝐸𝑙(𝑡) = 𝐴𝑙 exp(𝑖𝜔𝑙𝑡), (4) 
 

where 𝐴𝑐 and 𝐴𝑙 are the complex amplitude of the laser 1 

and 2, respectively, and 𝜔𝑐 and 𝜔𝑙 are the optical angular 

frequency of the laser 1 and 2, respectively. The complex 

amplitude 𝐴𝑙 of the laser 2 is constant because the laser 2 

has no optical feedback. 

We can extract the frequency dynamics of the laser 1 by 

using an optical 90° hybrid which provides 90° phase shift. 

The output of LO is split into two paths. One output is 

interfered with the output from the laser 1 in the coupler 1, 

and the other output with 90° phase shift is interfered with 

the output of the laser 1 in the coupler 2. Note that these 

two optical couplers add 180° phase shift to the output from 

LO. The interfered optical outputs from these two couplers 

are detected at two balanced photodetectors (PD). The 

balanced PD can suppress the DC component and 

emphasize the beat between the laser 1 and LO. The optical 

intensities detected at the balanced PD 1 and 2 are given by 

the following equations; 
 

  𝐼1(𝑡) = |𝐸𝑐(𝑡) + 𝐸𝑙(𝑡)|2/4, (5) 

𝐼2(𝑡) = |𝐸𝑐(𝑡) − 𝐸𝑙(𝑡)|2/4, (6) 

𝐼3(𝑡) = |𝐸𝑐(𝑡) + 𝑖𝐸𝑙(𝑡)|2/4, (7) 

𝐼4(𝑡) = |𝐸𝑐(𝑡) − 𝑖𝐸𝑙(𝑡)|2/4. (8) 
 

The outputs from the balanced PDs are given by 
 

𝐼𝐼(𝑡) = 𝐼1(𝑡) − 𝐼2(𝑡)   

                 = 𝐴𝑐(𝑡)𝐴𝑙 cos{(𝜔𝑐 − 𝜔𝑙)𝑡}, (9) 

𝐼𝑄(𝑡) = 𝐼3(𝑡) − 𝐼4(𝑡)   

                 = 𝐴𝑐(𝑡)𝐴𝑙 sin{(𝜔𝑐 − 𝜔𝑙)𝑡}, (10) 
 

where 𝐼𝐼(𝑡)  and 𝐼𝑄(𝑡)  indicate in-phase and quadrature 

components of the complex amplitude of the laser. Using 

Eqs. (9) and (10), we can restore the complex electric field 

of the laser 1, represented as,  
 

    𝐼𝑒(𝑡) = 𝐼𝐼(𝑡) + 𝑖𝐼𝑄(𝑡)   

           = 𝐴𝑐(𝑡)𝐴𝑙 exp[𝑖{Δ𝜔𝑡 + 𝜃𝑠(𝑡)}], (11) 
 

where 𝛥𝜔 is the angular frequency detuning between the 

optical angular frequency of the laser 1 and 2 (Δ𝜔 = 𝜔𝑐 −
𝜔𝑙), and 𝜃s(t) is the phase of the laser 1. Equation (11) is 

equivalent to the complex electric field of the laser 1 𝐸𝑐(𝑡) 

if the angular frequency detuning set to Δ𝜔 = 0. Therefore, 

we can extract the phase of the laser 1 from the following 

equations, 
 

𝜙𝑒(𝑡) = arg(𝐼𝑒(𝑡)). (12) 
 

We calculate the optical frequency dynamics of the laser 

1 using the extracted phase 𝜃𝑒(𝑡), represented as, 
 

Δ𝑓𝑐(𝑡) =
1

2𝜋
⋅

𝜙𝑒(𝑡) − 𝜙𝑒(𝑡 − 𝜏1)

𝜏1

. (13) 

 

where 𝜏1 is the delay time for the frequency calculation.  

To confirm the validity of the optical frequency 

dynamics calculated from the optical coherent detection 

scheme, we compare the frequency dynamics obtained 

from this scheme with its theoretical estimation. The 

theoretical estimation of the frequency dynamics can be 

calculated from the optical phase as follows, 
 

𝜙𝑡(𝑡) = arctan (
𝐸𝑖𝑚(𝑡)

𝐸𝑟𝑒(𝑡)
)., (14) 

 

where 𝐸𝑟𝑒(𝑡) and 𝐸𝑖𝑚(t) are the real and imaginary parts 

of the complex electric field 𝐸𝑐(𝑡) . The theoretical 

estimation of the optical phase can be calculated from the 

Lang-Kobayashi equations only in numerical simulation, 

but not in experiment. We can obtain the theoretical 

frequency dynamics Δ𝑓𝑡(𝑡)  from 𝜙𝑡(𝑡)  as follows, 
 

Δ𝑓𝑡(𝑡) =
1

2𝜋
⋅

𝜙𝑡(𝑡) − 𝜙𝑡(𝑡 − 𝜏1)

𝜏1

. (15) 

 

The extraction of the frequency dynamics is successful if 

the frequency dynamics Δ𝑓𝑐(𝑡)  obtained from the optical 

coherent detection scheme matches the theoretical 

estimation Δ𝑓𝑡(𝑡). 
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Fig. 1: Model for optical coherent detection scheme [8]. 
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We calculate the cross-correlation value between Δ𝑓𝑐(𝑡) 

and Δ𝑓𝑡(𝑡)  to evaluate the similarity quantitatively. The 

cross-correlation value is given by the following equation, 
 

𝐶 =
⟨[Δ𝑓𝑐(𝑡) − Δ𝑓𝑐̅][Δ𝑓𝑡(𝑡) − Δ𝑓𝑡̅]⟩

√⟨[Δ𝑓𝑐(𝑡) − Δ𝑓𝑐̅]
2

⟩ √⟨[Δ𝑓𝑡(𝑡) − Δ𝑓𝑡̅]
2
⟩

. 
(16) 

 

where ⟨⋅⟩  represents time averaging, Δ𝑓c̅  and Δ𝑓𝑡̅  are time 

averages of Δ𝑓𝑐(𝑡) and Δ𝑓𝑡(𝑡), respectively． 

 

4. Numerical results of extraction of optical frequency 

dynamics 

 

We numerically extract the phase and frequency 

dynamics of the semiconductor laser with time-delayed 

optical feedback using the optical coherent detection 

scheme. Figure 2 shows the optical intensity dynamics of 

the laser 1. The optical intensity of the laser 1 fluctuates 

chaotically. We set the initial optical angular frequency 

detuning between the laser 1 and LO to Δ𝜔 = 0 GHz.  

Figure 3(a) shows the phase dynamics of the laser 1 

obtained by the optical coherent detection scheme (the red 

curve). The phase dynamics is calculated from Eq. (12). 

The theoretical estimation of the phase dynamics is also 

shown in Fig. 3(a) (the black curve), which is calculated 

from Eq. (14). The cross-correlation value between the two 

curves is 𝐶 = 1.00 . Therefore, the extraction of phase 

dynamics of the chaotic laser is succeeded by using the 

optical coherent detection scheme in numerical simulation.  

We convert the phase dynamics to the frequency 

dynamics by using Eq. (13). Figure 3(b) shows the 

frequency dynamics calculated from Eq. (13) using 𝜏1 =
0.01  ns. It can be seen that the frequency dynamics 

oscillates chaotically at frequencies of a few GHz.  

  

5. Characteristic of frequency dynamics 

 

We compare the characteristic of the frequency dynamics 

with that of the intensity dynamics. Figures 4(a) and 4(b) 

show the bifurcation diagrams of the intensity and 

frequency dynamics, respectively, as a function of the 

reflectivity 𝑟3  of the external cavity mirror (i.e., the 

feedback strength κ). The feedback strength is calculated 

from 𝜅 = (1 − 𝑟2
2)𝑟3/𝑟2 , where 𝑟2  is the facet reflectivity 

of the laser 1. From Fig. 4, both of the bifurcation diagrams 

show similar structures, and chaotic fluctuations are 

observed at the same 𝑟3 for both the intensity and frequency 

dynamics. However, the frequency dynamics contains 

pulse-like oscillations at large 𝑟3 in the bifurcation diagram 

of Fig. 4(b). 

We also compare the frequency spectra between the  

optical intensity and frequency dynamics. Figures 5(a) and 

5(b) show the Fourier spectra of the optical intensity 

dynamics and the optical frequency dynamics at 𝑟3 =
0.138, respectively. In Fig. 5, the spectrum of the frequency 

dynamics looks flatter than that of the intensity dynamics. 

We evaluate the bandwidth of the chaotic spectra by using 

the effective bandwidth [10], which sums up large discrete 

 
Fig. 2: Optical intensity dynamics of laser 1. 

 

 

 
Fig. 3: (a) Phase dynamics of the laser 1 obtained by the 
optical coherent detection scheme (red), and theoretical 
estimation (black). (b) Frequency dynamics of laser 1 
obtained by the optical coherent detection scheme. 

 
Fig. 5: Fourier spectra of (a) optical intensity dynamics 

and (b) optical frequency dynamics. 

 
Fig. 4: Bifurcation diagrams of (a) optical intensity 

dynamics and (b) optical frequency dynamics as a 

function of the reflectivity 𝑟3  of external cavity mirror 

(i.e., the feedback strength 𝜅 ). Local maxima of 

temporal waveforms are plotted for different 𝑟3. 
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spectral segments of the power spectrum accounting for 

80 % of the total power. The effective bandwidths of the 

intensity and frequency dynamics are 6.65 GHz and 8.17 

GHz, respectively. Therefore, the bandwidth of the 

spectrum of the frequency dynamics is larger than that of 

the intensity dynamics. 

We compare the effective bandwidth between the 

intensity and frequency dynamics. Figure 6 shows the 

effective bandwidths of the spectra of the intensity and 

frequency dynamics for different values of the reflectivity 

𝑟3. The black curve shows the bandwidth of the intensity 

dynamics, and the red curve shows the bandwidth of the 

frequency dynamics. From Fig. 6, the effective bandwidth 

of the frequency dynamics is larger than that of the intensity 

dynamics at the region of 𝑟3 > 0.1  , where both the 

frequency and intensity dynamics fluctuate chaotically. 

Chaotic fluctuations of the frequency dynamics with larger 

effective bandwidth could be useful for fast physical 

random number generation as an entropy source. 

 

6. Conclusions 

 

We numerically extracted the optical frequency 

dynamics of chaotic oscillations over a few GHz in a 

semiconductor laser with time-delayed optical feedback 

using the optical coherent detection scheme. We succeeded 

in extracting the phase and frequency dynamics of the 

chaotic laser. We compared the characteristic of the 

frequency dynamics with that of the intensity dynamics. 

Both of the frequency and intensity dynamics have similar 

bifurcation structure for different values of the reflectivity 

of the external mirror. We also compared the effective 

bandwidth of the Fourier spectra between the frequency 

and intensity dynamics. The effective bandwidth of the 

frequency dynamics is larger than that of the intensity 

dynamics when the frequency and intensity dynamics 

fluctuate chaotically. The frequency dynamics has larger 

bandwidth than that of the intensity dynamics and could be 

useful for fast physical random number generation. 

We expect that it is possible to observe the optical 

frequency dynamics over GHz in experiment by using the 

optical coherent detection method. Furthermore, the speed 

of random number generation could be enhanced by using 

both the chaotic intensity and frequency dynamics in 

parallel. 
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Fig. 6: Effective bandwidths of Fourier spectrum of the 

optical intensity dynamics (black) and the optical 

frequency dynamics (red) as a function of the reflectivity 

𝑟3 of the external mirror. 
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