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Abstract—The Hopf Cochlea is a hard- and software
implemented model of the mammalian cochlea that is con-
structed from a series of feedforward coupled nonlinear
Hopf system amplifier sections. All salient nonlinear as-
pects of hearing can be traced back to the physical prop-
erties of the Hopf oscillators. At each location along the
cochlea, the amplification strength is effectively governed
by a single real parameter characterizing the distance of
the Hopf oscillator from the Hopf-bifurcation point. Using
these parameters, given a mixture of input signals (e.g., a
set of musical instruments) it should be possible to tune the
cochlea towards a single sound component. Introducing an
autocorrelation-based tuning measure, we demonstrate the
tunability of the Hopf Cochlea on recorded real-life instru-
ments of different timbres and pitches. Despite the strongly
nonlinear and therefore interaction-prone nature of the de-
vice, strong and simple tuning patterns permit an easy tun-
ing to sounds of varying pitch.

1. Introduction

As early as 1863 H.L.F. Helmholtz proposed a place-
frequency mapping along the basilar membrane (tonotopic
principle), enabling the cochlea to perform a Fourier de-
composition of an incoming stimulus. In 1948 T. Gold con-
jectured (see [4]) that an active amplification process com-
pensates for the damping of wave energy in the liquid filled
cochlea ducts, explaining inconsistent results obtained ear-
lier on dead cadavers [1]. Subsequent measurements per-
formed in living animals (cf. Ruggero [13]) finally re-
vealed sharp frequency tuning of the basilar membrane re-
sponse at a specific location, and a nonlinear compressive
amplification of the stimulus. These effects emerge nat-
urally and metrically verifiably if the mechanical amplifi-
cation process originates from coupled dynamical systems
each operating in a regime just below the Hopf bifurcation
point [8, 3]. This then led to the implementation of these
observations in a Hopf cochlea device that reproduces all
the salient measurements emerging from the mammalian
cochlea [9, 12, 15, 11]. Using this device that offers in
contrast to the biological example excellent experimental
accessibility and reproducibility, all salient nonlinear hear-
ing phenomena discovered by de Boer [2] could be ex-
plained and be metrically verified [11]. The necessity of
nonlinear amplification (much for faint sounds, lesser for
louder sounds) accounts thus for the ability of the mam-

malian hearing to obtain a coherent picture of an incoming
complex sound by attributing to it a pitch quality [11]. Less
obviously emerging from the Hopf property is our ability to
tune in on one particular sound component in a sound mix,
say on a particular instrument within an orchestra. This
tuning is initiated by the cortex via its decision on what to
focus. Therefore, it is implemented predominantly via ef-
ferent connections to the auditory brainstem nuclei and to
the outer hair cells that implement the Hopf amplification
profile. These connections were well-know to the physiol-
ogists, but their purpose has not been recognized until quite
recently ([5] for a review, [7]). From the Hopf cochlea con-
cept it directly follows that these connections naturally de-
fine the distance of the Hopf amplifiers to the bifurcation
point. As such, they also can be used in experiments to de-
termine the efficacy and the rules adherent to this tuning.
In what follows, we explore these rules. The present in-
vestigation can serve as a guiding example of the coherent
tuning of a complex interacting network towards a coherent
reaction.

A system exhibiting a Hopf bifurcation is generically
described by a complex inhomogeneous Hopf differential
equation [8]:

d
dt

z = (µ + i)ωchz − ωch|z|2z − ωchF(t),

where F(t), z(t) ∈ C, where ωch is the characteristic os-
cillation frequency of the system and where µ ∈ R is the
bifurcation control parameter and F(t) is the forcing stim-
ulus (we consider here a by ωch rescaled Hopf equation).
Writing z(t) = R(t)eiθ(t) and separating real and imaginary
parts, the free equation (i.e. F(t) ≡ 0) obtains the form:

d
dt

R = R µωch − ωchR2 R,
d
dt
θ = ωch.

The behavior of the free system is determined by the con-
trol parameter µ. For µ < 0 the system has a stable fixed
point at R = 0. For µ > 0, the fixed point R = 0 be-
comes unstable and stable limit cycle solutions of the form
z(t) =

√
µeiωcht emerge (so-called ’SOAE’). Assuming a

1 : 1 locking between system and stimulus [3] for a peri-
odic forcing F(t) = F eiωt (i.e. z(t) = R ei(ωt+θ)) removes the
time dependence and yields an algebraic equation relating
the forcing amplitude F to the response amplitude R. After
taking the modulus squared (multiply the equation by the
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complex conjugate equation), the resulting equation of 3’rd
order in R2 reads

F2 = γ2R6 − 2γµR4 + [µ2 + (1 − φ2)] R2,

with φ ≡ ω
ωch

and where γ > 0 has been included in
the damping term −ωch |z|2 z to model response latencies
[9, 12]. To see how Hopf systems account for the hearing
characteristics (sharp frequency tuning, compressed am-
plification) mentioned above it is instructive to study the
Hopf equation in the different regimes of parameter space
(Ω = span(φ, µ)). At the bifurcation point (µ ' 0) and
close to resonance (φ ' 1), a non-linear signal response
R ∝ F

1
3 relation emerges. For vanishing signal strength,

the gain G = R/F = F−2 increases towards infinity. As-
suming µ < 0 and φ ' 1 one obtains the linear response
R = F/|µ| for weak stimuli where the quadratic and cubic
term in R2 can be neglected. As F increases, the term γ2 R6

starts to contribute, and a compressive nonlinear regime of
the system response is entered. Hence for weak stimuli, the
response of the subcritical resonant Hopf system is almost
linear, whereas for moderate stimuli dF

dR < 0 holds. Away
from resonance (φ , 1), the last term dominates, leading to
a linear response R = F/|1 − φ|.

In engineering terms, the cochlea can be considered as an
array of feed-forward coupled amplifiers indexed by i, the
dynamics of each being described by a Hopf equation of
logarithmic decreasing characteristic frequencies ωi

ch and
local bifurcation parameters µi. Additionally, every ampli-
fier is followed by a low pass filter to account for the vis-
cous fluid damping. This model underlies the design of the
biomorphic Hopf cochlea [9, 12, 15, 11].

2. Controlling a complex auditory system

A setting of the parameter µ of all oscillators equal to a
value slightly below the bifurcation point (e.g. at µi = −0.1
for all sections) results in an amplification profile that is
very close to the one measured experimentally in animals
[13, 9, 15, 11]. In contrast to this ’flat’ tuning, the choice
of different µ-values for individual sections might help the
mammalian hearing system to effectively focus on desired
sounds and to eliminate unwanted signals already at the
very beginning of the auditory processing pathway. The
purpose of our contribution is to evaluate the potential
of this strategy offered to the mammalian hearing system
by means of its efferent connections to the cochlea. To
understand the relationship between this topic and complex
networks, recall that the activation of already two sections
will trigger the activation of a whole number of sections
representing combination-tones [16, 17, 12, 15, 11], see
Fig. 1.

It is therefore by no means clear, whether and if so to
what extent the cochlear network can be tuned towards the
extraction of a particular sound. If too many sections need
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Figure 1: Combination tone generation. a) Power-
spectrum of the input, an AM-sound with A = 0.1, fcar =

1.65 kHz, fmod = 0.2 kHz consisting of three frequencies.
b) Power-spectrum after the 5th section of the cochlea
(of total 17) with characteristic frequency CF=1676 Hz.
Strong combination tone generation is visible which would
be absent in a classical, linear cochlea.

to be manipulated at the same time or if no simple coher-
ent tuning strategies along the cochlear array can follow
a signal of changing pitch, then an active tuning towards
sources will be elusive. We will show that exactly due to
the nonlinearity of interactions between the amplifiers, the
Hopf cochlea is even easier tunable than a linear device.
We begin our presentation with the overall picture of the ef-
fects by tuning. Figure 2 shows the loss in gain in dB upon
moving one specific section’s µ-value µs from the bifurca-
tion away to a more negative value. Physiological investi-
gations [10, 5] indicate that we should primarily consider
this case of tuning and not the situation where the cochlea’s
amplifiers are initially far from the bifurcation point and the
tuning is accomplished by pushing a few sections towards
the bifurcation point. In principle, both mechanisms appear
possible and might even be used at the same time. For the
following figure, we use a cochlea of 20 sections covering
a range of 3 octaves from 2000 Hz to 16000 Hz to com-
pare with physiological results obtained by [14]. Interme-
diate characteristic frequencies are logarithmically spaced
according to the tonotopic organization of the mammalian
cochlea. For Figure 2, the gain is measured at the 5’th of 20
sections (characteristic frequency: 10328 Hz), comparable
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to measurements in [14] where a location 3.5mm from the
oval window was chosen. Input sounds were pure tones
with frequencies between 2000 Hz and 17448 Hz and five
amplitude values (maximum of the wav-file coefficients)
in the range of

√
10−2 to

√
10−10. The latter range cor-

responds to a spacing of 20dB. The observed tuning ef-
fect is strongest in the range of small amplitudes and small
µs-values, in accordance with the principle that the Hopf
amplifier is most sensitive in the small-amplitude regime.
When changing the value of µ5 to = −1.0, the maximal loss
measured at the lowest amplitude

√
10−10 is roughly 19 dB

(a value consistent with physiological data) and could still
be increased when moving µ5 to more negative values (e.g.
−2.0).

2000 5000 10000 20000
−20

−10

0

10

20

30

40

50

60

70

80

Frequency [Hz]

10
 lo

g 10
A

o2 /A
i2

[d
B

] 52 dB

19 dB

Figure 2: Loss in gain upon moving away one section from
the bifurcation. Characteristic isointensity curves for the
gain (spacing 20 dB) obtained at the 5th section for flat
tuning µ = −0.05 (black) and changed µ5 = −1.0 (red).
The uppermost curves with highest gain correspond to a
stimulus level of −100dB, the lowermost curves to a level
of −20dB. The black arrow indicates a difference in peak
gain for the −20dB and the −100dB curves of 52dB (flat
tuning), which is comparable to values in [14] (38.5 and
59.5 dB). The red arrow shows the 19dB-decrease in gain
for the lowest stimulus level −100dB when µ5 is changed
to −1.0.

To assess the tunability of this highly nonlinear device
for complex sounds, we define a tuning measure T Q that
characterizes the cochlea’s capability of extracting from a
mixture of two sounds one desired sound. Motivated by the
current models of pitch perception, this measure uses the
summary autocorrelation function (SACF), defined as the
sum of normalized autocorrelations of each section’s out-
put. T Q is obtained as the (e.g., Euclidean) distance of the
cochlea’s SACF to the normalized autocorrelation (NACF)
of the target signal x, divided by the Euclidean distance of
the cochlea’s SACF to the NACF of the unwanted signal y.

Mathematically, this can be cast as

T Q(x, y) :=
||NACF(x) −

∑
i NACF( fi(x + y))/N ||2

||NACF(y) −
∑

i NACF( fi(x + y))/N ||2
, (1)

where the sum extends over the sections and where fi
denotes the output at the i’th section. The value of the
measure T Q is between 0 and∞: A small T Q close to zero
denotes successful tuning whereas a large T Q indicates
bad tuning. The tuning of the cochlea towards a complex
sound may thus be formulated as a T Q-minimization
problem in µ-parameter space. We approached this prob-
lem with various state-of-the-art numerical minimization
algorithms, such as the evolutionary algorithm CMA−ES .

3. Results

For the tuning experiments on real sounds, a cochlea of
17 sections covering 4 octaves was chosen (characteristic
frequencies ranging from 220 to 3520 Hz). The mixed
sound that we start with was composed of sounds of two
characteristic organ pipes, one being a wooden flute-like
8’ register (“Floete”) and the other being a metallic reed-
stop (“Zinke”). Both data strings were normalized with re-
spect to their total energy (the square-root of the sum of the
squared wave-coefficients). The amplitudes were set to be
at −110dB. This falls into the low-amplitude regime where
tuning effectivity is promising. Results of CMA − ES tun-
ing for recorded organ sounds are shown in Figure 3.

Fig. 3a shows an emerging tuning pattern when the
“Zinke” is the target sound while it sweeps from 220Hz to
440Hz in steps of one semitone (x-axis). The sound to sup-
press is the “Floete”, constant at a pitch of 220Hz. As the
z-value of the contour plot, the logarithm of the bifurcation-
parameter µ is displayed, where red codes for close to and
blue for far away from the bifurcation point. In a second
plot, the resulting tuning measure T Q (red) is compared to
the the tuning measure when flat tuning is applied (black).
Fig. 3b shows the corresponding figures for the reverse
case, when the sweeping “Floete” is the target signal and
the constant 220-Hz “Zinke” is the undesired sound.
From the minimization procedure, surprisingly simple tun-
ing patterns emerge. The patterns can be well-understood
from the characteristic power spectra of the two sound
sources: While the “Floete” sound is poor in higher har-
monics and thus dominated by its fundamental frequency,
the “Zinke” sound displays a wide spectrum of strong
higher harmonics, with the third and the fifth harmonics
standing out. When a sweeping “Zinke”-signal is the tar-
get, we thus find an enhancement of the 3rd and 5th har-
monic (indicated by dashed black lines to guide the eye).
Contrarily, in Fig. 3b, targeting the “Floete” reveals a sim-
ple pattern where the ground frequency is enhanced and all
higher frequencies (that mainly originate from the “Zinke”)
are suppressed. In both cases, the tuning measure of the
tuned cochlea (red curves) are well below those obtained
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Figure 3: a) Tuning patterns for the “Zinke” as the target,
b) for the “Floete” as the target. Red indicates close to bi-
furcation values (strong amplification), blue indicates large
distance from bifurcation point (weak amplification). Tun-
ing towards “Zinke” clearly requests the enhancement of
the 3d and of the 5th harmonic (two parallel red stripes,
indicated by black dashed lines). In the tuning towards
the “Floete”, higher frequencies are suppressed and only
the ground frequency is enhanced (single red stripe, black
dashed line). Below we display the corresponding TQ
of the tuned cochlea (red line) compared to a flat-tuned
cochlea (black line) (µ = −0.1; TQ well below 1 indicates
successful tuning).

for flat tuning (black curves). The tuning measures of the
tuned cochlea are consistently and significantly below the
value 1, implying that the cochlea successfully enhanced
the target signal, independent of the target’s pitch and of
the to-be-suppressed signals. Regarding the amplitude-
dependence of the tuning, we find relatively similar T Q-
values for amplitudes from −110 to −40 dB. This refutes
an impression from Fig. 2 that with higher amplitudes the
tuning efficacy might worsen. We noticed, however, that
in this case the tuning patterns wear out and become more
difficult to interpret. The experiments demonstrate impres-
sively that despite its highly complex and nonlinear nature,
the Hopf cochlea is remarkably fine-tunable.
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