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Abstract—Clustering has the desirable properties
for designing energy efficient Wireless Senor Networks
protocols. In this paper, we investigate how cluster
formation of sensors respond to external time-invariant
potential. Mathematically, we link the sensors’ trajec-
tories to sectional curvature of the external potential
manifold. Information of the external potential can be
obtained by analyzing the formation change of Wire-
less Sensor Network clusters.

1. Introduction

In recent years, Wireless Sensor Networks (WSNs)
have attracted much attention due to its ability to pro-
vide ubiquitous and multi-faceted situational aware-
ness with a host of applications ranging from struc-
tural health monitoring, habitat surveillance, and tar-
get detection to power system management, smart car
parking, and wireless luggage tags [1], [2], [6], [7], [10].
WSN depends on spatially distributed sensor node
to measure and collect the desire environmental data
within its sensing range, and then transmit to a con-
trol center called Base Station (BS). In most cases,
energy is limited due to either hardward limitations
or environments. As energy is constrained and data
transmission is most energy costly, WSNs algorithms
need to be architect in ways where data transmission,
especially to BS, is minimized.

The existing algorithms focus on clustering of sen-
sors, where collected data are first transmited to sen-
sors with higher operational hierarchy, which then re-
lay information to BS [4], [8]. To address the energy
efficiency challenge from a new perspective, we fo-
cus on designing WSNs algorithm where desired envi-
ronmental information is obtained by oberserving the
change in sensor cluster formations. Quantitative en-
vironmental data transmission from WSNs to BS is
eliminated in this algorithms, thereby minimizing the
energy expenditure and extending network lifetime.

In this paper, we identify the envrionmental in-
formation as a potential hypersuface M of (n − 1)-
dimensions (n = 3). Mathematically, M is a Rieman-
nian manifold defined by the set of solutions to a single
equation

f(x1, . . . , xn) = 0, (1)

where f is a C∞ function. We introduce an algorithm
that exploits formation of the WSN sensors to com-
pute curvature, which is invariant under isometry, of
the manifold M . Curvature of manifold M can be
seen as a manifestation of the environmental potential
information.

2. Mathematical preliminaries

In this section, the theoretical basis for the algo-
rithm are provided; necessary elements and definition
of differential geometry are discussed [3], [5].

2.1. Metric, connection, and curvature

Let U ⊆ Rn be a non-empty open subset and
f : U → R a C∞ function. Let M ⊆ U × R be the
graph of f . The closed subset M in U × R projects
homeomorphically onto U with inverse (x1, . . . , xn) 7→
(x1, . . . , xn, f(x1, . . . , xn)) that is a smooth mapping
from U to U × R. M is a closed smooth submanifold
of U × R. Using the standard Riemannian metric on
U × R ⊆ Rn+1, the induced metric g on M at a point
p ∈M is

g(p) = 〈∂qi
|p, ∂qj

|p〉p dqi(p)⊗ dqj(p) (2)

with coordinate chart {qi} on M . Each ∂qi
|p ∈ TpM

can be represented as a linear combination of {∂xi
|p} ∈

Tp(Rn+1), given as

∂qi
|p = ∂xi

|p + ∂xi
f(p)∂xn+1 |p. (3)

Consider the aforementioned graphM as a C∞ Rie-
mannian manifold. Given a curve, C : [a, b] −→ M ,
a vector field X along C is any section of TM over C
(X : [a, b] −→ TM , projection π : TM −→ M , such
that π ◦X = C). IfM is a smooth manifold, all vector
field on the manifold are also smooth. We denote the
collection of all smooth vector fields on manifoldM as
X(M).
For a Riemannian manifold (M, g), the Levi-Civita

connection ∇g on M is the unique connection on the
tangent bundle TM that has both metric compatibil-
ity and torsion freeness. The Christoffel symbols of
the second kind are the connection coefficients (in a
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local chart) of the Levi-Civita connection denoted as

Γljk = 1
2g

lr(∂kgrj + ∂jgrk − ∂rgjk). (4)

For a Riemannian manifold (M, g), a curve is called
geodesic with respect to the connection ∇g if its accel-
eration it zero. That is a curve γ where ∇γ̇ γ̇ = 0. A
geodesic curve in n-dimensional Riemannian manifold
can be expressed as a system of second order ordinary
differential equations,

d2γi

dt2
+ Γijk

dγj

dt

dγk

dt
= 0. (5)

All geodesics are the shortest path between any two
points on the manifold.
Any connection on a manifold gives rise to a curva-

ture tensor. In some sense, curvature tensor measures
how closely is the connection of the manifold relates to
the standard connection in Rn, which we assume has
zero curvature. Let (M, g) be a Riemannian manifold
and ∇ its Riemannian connection. The curvature ten-
sor is a (1, 3) tensor defined through the Lie bracket
as

R(X,Y )Z = (∇[X,Y ] − [∇X ,∇Y ])Z, (6)

where X,Y, Z ∈ X(M), and R(X,Y )Z is vector-
valued. R(X,Y )Z can be express in local chart as

Rknij =
∂Γknj
∂xi

− ∂Γkni
∂xj

+ ΓanjΓkai − ΓaniΓkaj . (7)

Let tangent 2-plane, Πp, be the two dimensional
subspace in TpM defined as Πp ≡ span{u, v}, with
u, v ∈ TpM . Sectional curvature K of (M, g) at a
point p ∈M with respect to the plane Πp is defined as

K(Πp) = 〈R(X,Y )X,Y 〉p
|X|2p|Y |2p − 〈X,Y 〉2p

, (8)

where X,Y ∈ X(M).

2.2. Jacobi field

Let γ : [a, b] −→ M be geodesic. A vector field J
along γ is called a Jacobi field if

J̈ +R(J, γ̇)γ̇ = 0, (9)

where J̈ ≡ ∇ d
dt
∇ d

dt
J , and γ̇ ≡ dγ

dt
.

2.3. Geodesic deviation equation

Geodesic deviation equation relates the acceleration
of the separation vector between two neighbouring
geodesic curves to Riemannian curvature tensor. Con-
sider two nearby geodesics γ and γ̃. In terms of local

chart and curve parameter τ , the small coordinate dif-
ference can be written as vectors,

S(τ) = γ̃(τ)− γ(τ) (10)

denote as seperation vector.
The separation acceleration is

W = ∇γ̇∇γ̇S = ∇γ̇V, (11)

where V is the separation velocity. In a local chart,
W and V can be expressed as

V i = dSi

dτ
+ Γijkγ̇jSk,

(12)
W i = dV i

dτ
+ Γilmγ̇lV m,

(13)

where γ̇ ≡ dγ

dτ
. Combining (12) and (13) gives

W i = d2Si

dτ2 + 2Γijkγ̇j
dSk

dτ
+
∂Γijk
∂γl

γ̇lγ̇jSk

+ Γijkγ̈jSk + ΓilmΓmjkγ̇j γ̇lSk,
(14)

where γ̈ ≡ d2γ

dτ2 .
Rearranging (10) to be

γ̃(τ) = γ(τ) + S(τ), (15)

where separation vector S(τ) is considered as a small
variation parameter. Both curves γ and γ̃ are geo-
desics, then by definition of (5),

d2γi

dτ2 + Γijk
dγj

dτ

dγk

dτ
= 0, (16)

and

d2(γi + Si)
dτ2 + Γi

jk(γi + Si)d(γj + Sj)
dτ

d(γk + Sk)
dτ

= 0.
(17)

Treating deviation vector Si(τ) as the expansion pa-
rameter and only keep the first order terms (since it is
small), and make use of (16), (17) becomes

0 = d2Si

dτ2 + 2Γijkγ̇j
dSk

dτ
+
∂Γijk
∂γl

γ̇j γ̇kSl. (18)

Inserting both (16) and (18) into (14), the result is

W i = −(
∂Γi

jl

∂γk
−
∂Γi

jk

∂γl
+ Γm

jl Γi
mk − Γi

lmΓm
jk)γ̇jSkγ̇l

≡ −Ri
jklγ̇

jSkγ̇l.

(19)

Note the deviation vector field S is a Jacobi field.
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3. Swarm formation

For the definition of swarm formation we follow
Olfati-Saber [9]. The topology of swarm formation
is an example of undirected graph. Define a graph
G as a pair (V, E) that consists of a set of vertices
V = {1, 2..., n} and a set of edges E ⊆ V × V, and
symmetric adjacency matrix A satisfying the property
aij 6= 0 ⇐⇒ (i, j) ∈ E . Each vertices represent an
agent, while the edges are the inter-agent distance.
Let qi ∈ R denote the position of agent i for all i ∈ V.
The vector q = (q1, ..., qn)T is the configuration of all
agents of the swarm. To maintain identical inter-agent
distances (geodesic length between two points on a
manifold) over G(q), consider an algebraic constraint,

dis(qj − qi) = d, ∀j ∈ Ni(q), d ∈ R. (20)

For simplicity, this paper focuses on line formations,
where Ni(q) is the ith agent most immediate left and
right neighbouring agents. A configuration q that sat-
isfying the set of constraints in (20) is refered as a
lattice formation.

4. Algorithm

Equipped with the theoritical basis in Section 2, and
the definition of cluster formation in Section 3, we will
proceed to the algorithm itself. The algorithm uses the
spatial-variant swarm’s configuration in lattice forma-
tion to calculate the sectional curvature of the external
energy potential. For simplicity, agents are divided
into one head agent and the following agents. The
head agent has a predefined initial position and ve-
locity, and are not communicating with other agents.
The following agent are assumed only to communicate
with its immediate neighbours (which ever closer to
the head agent). The distance constraint in Riemann
manifold are the geodesic distance between two agent,
which can also be seen as the inter-agent energy po-
tential.

The algorithm has four main steps:
1. Define head agent trajectory.
2. Construct parallel vector field orthogonal to head

agent trajectory.
3. Construct geodesic deviation vector field.
4. Calculate accelerations of the geodesic deviation

vectors.
The mathematical details and WSNs interpretations

are explained as the follows.

4.1. Head agent trajectory

Head agent trajectory, h(t), on n-dimensional Rie-
mannian manifold (M, g) is defind in coordinate chart
as

ḧk + Γkij ḣiḣj = 0, (21)

where ḣ and ḧ are the first and second derivative with
respect to time, respectively. For two dimensional
manifold, the head agent trajectory is a system of or-
dinary differential equations

ḣ1 = h3,

ḣ2 = h4,

ḣ3 = −Γxxx(h3)2 − 2Γxxyh3h4 − Γxyy(h4)2,

ḣ4 = −Γyxx(h3)2 − 2Γyxyh3h4 − Γyyy(h4)2,

(22)

where basis {x, y} are used in the index. Note that
the head agent trajectory is a geodesic in M .

4.2. Inter-agent energy potential

The agents are assumed to be in lattice formation.
The distance constraint between two agents is mea-
sured to be the length of the geodesic. A parallel
vector field, V , that is orthogonal to the head agent
trajectory is constructed as

∇V V = 0. (23)

V forms a family of geodesic curves that is orthogonal
to the head agent trajectory.

4.3. Following agent trajectories

As mentioned in section 2.3, S is the separation vec-
tor field. From the view of the WSN, following agents’
trajectories are the integral curves of S. Different inte-
gral curves of S represent following agent’s trajectory
at different inter-agent potential energy level. Fig. 1
shows vector field S in two dimensions for an elliptic
paraboloid potential manifold.

Figure 1: Two dimensional visual example of energy
deviation lines respect to predefined head agent tra-
jectory for elliptic paraboloid potential manifold.
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4.4. Sectional curvature and acceleration vec-
tor field

The acceleration of the separation vectors along V ,
is equivalent to the change in the difference of nearby
agent’s velocity. According to (14), we can use this
change to calculate the curvature of the manifold.
Consider the sectional curvature equation (8) and sub-
stitude in the vector fields V and S constructed in
section 4.2 and 4.3,

K(V, S) = 〈R(V, S)V, S〉
|V |2|S|2 − 〈V, S〉2

. (24)

Also S is in fact a Jacobi field along V that is also or-
thogonal to V . That is W ≡ ∇2

τS = −R(V, S)V , and
〈V, S〉 = 0. Combining with the fact that the integral
curves of V are geodesics set to have velocity |γ̇| = 1,
the equation for sectional curvature is simplified to

W = −K(V, S)S. (25)

For a two dimensional Riemannian manifold (M, g),
there is only one sectional curvature at each point p ∈
M .

5. Simulations

Simulations for the algorithm are done on various
two dimensional potential manifold. Overall, the al-
gorithm is able to compute sectional curvature with
some extend of accuracy, shown in Fig. 2.

(a) F (x1, x2) =
x2

1 + x2
2

a
. (b) F (x1, x2) =

x2
1 − x2

2
a

.

Figure 2: Sectional curvatures comparison with algo-
rithm computed (red) and metrically calculated (blue)
in 3D for (a) elliptic paraboloid and (b) hyperbolic
paraboloid potential manifold. Head agent initial con-
dition h = [−5, 0], ḣ = [1, 0], and parameter a = 20.

6. Conclusion

This paper demostrates a new approach for energy
efficient WSNs’ algorithm. Unlike traditional algo-
rithms, the proposed algorithm relies on cluster for-
mation of WSNs to obtain environmental information,
thereby eliminates the neccessity of Base Station data
transmissions. However, the ability to observe the

change of WSNs cluster formation is requested. By
using the change of swarm lattic formation through
an external potential energy, the algorithm is able to
estimate the sectional curvature of the external poten-
tial.
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