
Switching of periodic orbits in dynamic binary neural networks

Shota Anzai†, Takumi Suzuki†, and Toshimichi Saito†

†Department of Electronics and Electrical Engineering, Hosei University
3–7–2 Kajino-cho, Koganei, Tokyo 184-8584, Japan, tsaito@hosei.ac.jp

Abstract—This paper studies hardware implemen-
tation and applications of dynamic binary neural net-
works. The network is characterized by ternary con-
nection parameters and the signum activation func-
tion. Depending on the parameters, the network can
generate various binary periodic orbits. A periodic or-
bit corresponds to a control signal of central pattern
generator. We present a simple FPGA-based hardware
of the six-dimensional network. As an application of
the hardware, we demonstrate a central pattern gen-
erator for typical insect gaits patterns.

1. Introduction

A dynamic binary neural network (DBNN) is an
nonlinear dynamical system characterized by signum
activation function and ternary binary connection [1]-
[4]. A delayed feedback is applied and the DBNN can
generate various binary periodic orbits. The DBNN
has advantages in precise analysis of the dynamics
and FPGA based low power hardware implementation.
Storage of target binary periodic orbits (TBPOs) and
stability analysis of the stored TBPO are important in
study of nonlinear dynamics. Real/potential engineer-
ing applications include associative memories [5] [6],
control of switching power converters [7] [8], and cen-
tral pattern generators in robotics [9] [10]. The DBNN
is an important study object from both fundamental
and application viewpoints.

This paper studies storage and switching of multiple
TBPOs in the DBNN in a typical example: switch-
ing of two TBPOs related to insect gaits patterns [9].
First, we consider condition for storage and switch-
ing of two TBPOs (TBPO1 and TBPO2) based on
two sets of connection parameters. In the first set,
TBPO1 is stored into the DBNN and all the elements
of TBPO2 fall directly into the TBPO1. In the sec-
ond set, TBPO2 is stored into the DBNN and all the
elements of TBPO1 fall directly into the TBPO2. Sec-
ond, we give examples of sparse connection parameters
that realizes storage and switching of the two TBPOs.
Presenting an FPGA-based hardware, the storage and
switching of the TBPOs are confirmed experimentally.
Applying a PWM signal, the TBPOs based control of
a hexapod walking robot is demonstrated.

2. Dynamic Binary Neural Networks

The DBNN is characterized by ternary connection
parameters and signum activation function as shown
in Fig. 1. The dynamics is described by

xt+1
i = F

⎛
⎝ N∑

j=1

wijx
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F (x) =
{

+1 if x ≥ 0
−1 if x < 0

wij ∈ {−1, 0, +1}, Ti ∈ {0,±1,±2, · · · ,±N + 1}
(1)

where xt ≡ (xt
1, · · · , xt

N)� is an N -dimensional binary
state vector at discrete time t and xt

i ∈ {−1, +1} is
the i-th element, i = 1 ∼ N .

For convenience, we introduce the vector form:
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⎟⎠ .

(2)

where W and T are referred to as connection matrix
and threshold vector, respectively. Given an initial
binary vector x1, the DBNN can generate various pe-
riodic/transient binary sequences.

Figure 1: DBNN and signum activation function. Red
and blue segments denote wij = +1 and wij = −1,
respectively.
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3. Switching of Target Binary Periodic Orbits

We consider switching of two target binary periodic
orbits:

TBPO1 with period pa: a1, a2, a3, · · ·{
as = au if |s− u| = npa

as �= au otherwise
TBPO2 with period pb: b1, b2, b3, · · ·{

bs = bu if |s− u| = npb

bs �= bu otherwise

(3)

where n denotes positive integers. Our objective is to
set parameters (wij, Ti) to realize the following two
phases.

Phase 1: TBPO1 is stored and all the elements in
TBPO2 fall directly into the TBPO1.

aτ+1 = F (W aτ − T ) for τ ∈ {1, · · · , pa}
ak = F (W bτ − T ) for τ ∈ {1, · · · , pb} (4)

where ak is an element of TBPO1.
Phase 2: TBPO2 is stored and all the elements in

TBPO1 fall directly into the TBPO2.

bτ+1 = F (W bτ − T ) for τ ∈ {1, · · · , pb}
bk = F (W aτ − T ) for τ ∈ {1, · · · , pa} (5)

where bk is an element of TBPO1.
Fig. 2 shows two TBPO examples corresponding to

typical insect gaits patterns. TBPO examples corre-
sponding to insect gaits.

Figure 2: Two patterns of insect gaits.

TBPO1 with period 2:
a1 = (−1, +1.− 1, +1,−1, +1)
a2 = (+1,−1. + 1,−1, +1,−1)
TBPO2 with period 6:
b1 = (+1,−1.− 1,−1,−1, +1)
b2 = (+1,−1.− 1,−1, +1,−1)
b3 = (−1,−1. + 1,−1, +1,−1)
b4 = (−1,−1. + 1, +1,−1,−1)
b5 = (−1, +1.− 1, +1,−1,−1)
b6 = (−1, +1.− 1,−1,−1, +1)

(6)

In the TBPOs, symbol ”+1” means movement and
symbol ”-1” mean no movement, respectively. Fig. 3
shows switching of TBPO1 and TBPO2.

After trial-and-errors, we have obtained two sets of
parameters that realize the two phases of the switching
TBPOs. The phase 1 is realize by

W2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 −1 −1 +1
−1 0 0 0 +1 −1
0 0 0 −1 −1 +1
−1 −1 0 0 0 −1
+1 0 0 0 −1 +1
0 −1 0 +1 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠
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⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

(7)
The phase 2 is realize by

W6 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 −1 −1 +1
−1 0 0 0 −1 −1
0 0 0 −1 +1 −1
−1 −1 0 0 0 −1
+1 0 0 0 +1 +1
0 +1 0 +1 0 +1

⎞
⎟⎟⎟⎟⎟⎟⎠

T6 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
2
0
2
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

(8)
These parameters correspond to network configura-
tions are shown in Fig. 3

Figure 3: Switching of TBPOs and DBNN. (1) Phase
1: Switching to TBPO1 with period 2. (2) Phase 2:
Switching to TBPO2 with period 6.
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Figure 4: DBNN circuit design

Figure 5: Measured waveform in an FPGA board

4. FPGA and Hexapod robot Implementation

Using Verilog, we have implemented an FPGA based
hardware circuit as shown in Fig. 4. Using the circuit,
we have performed laboratory experiments with the
following tools:

• FPGA board: BASYS3 (Xilinx Artix-7
XC7A35T-ICPG236C)

• Clock frequency: 6 [Hz] 1

• Measuring instrument: ANALOG DISCOV-
ERY2.

• Multi-instrument software: Waveforms 2015.

• Verilog version: vivado 2018.2 platform (Xilinx).

The switching of TBPO1 and TBPO2 is confirmed ex-
perimentally as shown in Fig. 5.

1the default clock frequency 100 [MHz] is divided for stable
measurements

In order to control a servomotors in a hexapod walk-
ing robot, we transform the TBPOs into pulse-width
modulation (PWM) signals. Fig. 6 shows the method
of generating the signal to move the servomotors. Ap-
plying PWM to the divided clock, the PWM signal
is generated by a binary signal of a TBPO from the
DBNN. Fig. 7 shows a binary DBNN signal and the
pulse-width modulation signal in the yaw axes and roll
axes. In the binary DBNN signals, symbol ”+1” is de-
signed to move the robot’s legs forward and symbol
”-1” is designed to move the robot’s legs backward,
respectively. Using the hexapod robot in Fig 8, we
have confirmed waling patterns of TBPO1 and TB-
POs experimentally.

Figure 6: Signal to operate the servomotors

Figure 7: PWM control singnal for a hexapod walking
robot.

Figure 8: In the experiment, we used the hexapod
robot. We have used the robot body and the servomo-
tors of Lynxmotion’s MH2 hexapod robot.
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5. Conclusions

Storage and switching of TBPOs in DBNN are con-
sidered in this paper. We have given two sets of pa-
rameters that realize the storage and switching of two
TBPOs related to insect gaits patterns. Presenting
an FPGA based hardware, switching of the two TB-
POs is confirmed experimentally. Future problems in-
clude detailed stability analysis of various TBPOs and
learning algorithm for storage and switching of various
TBPOs.
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