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Abstract—In the paper, a method of finite settling
time control of constrained systems is described. The
method is an extension of the relatively optimal con-
trol scheme by Blanchini and Pellegrino, and can de-
rive larger attractive regions and faster convergence
to the equilibrium point. Usefulness of the proposed
method are demonstrated through some examples.

1. Introduction

For almost all practical control systems, we need
to take into account constraints on state and/or con-
trol input caused by amplitude limitation of state vari-
ables, saturation property of actuators and so on. If we
ignore these constraints, then the real performance of
the system degrades or, in worst cases, the control sys-
tem becomes unstable. In these respect, extensive re-
searches have been done to cope with such constraints
(See [1] –[5] and references therein).

In this paper, we consider a state feedback dead-
beat control and will propose an extension of the static
ROC (Relatively Optimal Control) method [6]. The
proposing method has two advantages: The first is
that the attractive region is larger than that obtained
by ROC. The second is achieving faster convergence
to the origin than the ROC does.

2. Problem statement

2.1. System Description

Consider a discrete-time system given by
{

x[k + 1] = Ax[k] + bu[k], x[0] = x0,

z[k] = Lx[k] + Du[k],
(1)

where x ∈ R
n is the state of the system, x0 ∈ R

n is the
initial state, u ∈ R is the control input, and z ∈ R

m

is the vector of constrained variables. We assume that
A is nonsingular and (A, b) is a reachable pair.

When x0 and uk =
[

u[0] u[1] · · · u[k − 1]
]⊤

are
given, x[k;x0,uk] denotes the solution of the system
(1). The constraint is represented by z[k;x0,uk+1] =
(Lx[k;x0,uk]+Du[k]) ∈ Z for all k ≥ 0, where uk+1 =
[

u
⊤
k u[k]

]⊤
, and Z is a polytope given by

Z = {z : Hz ≤ h}, (2)

where H ∈ R
Nc×m, h ∈ R

Nc , h > 0, and inequalities
≤ and > means the element-wise inequalities.

We say that a region X q is a q-time attractive re-
gion if x0 ∈ X q then there exists an input uq such
that z[k;x0,uq] ∈ Z for all k = 0, 1, · · · q − 1 and
x[q;x0,uq] = 0.

2.2. An Motivative Example

Blanchini and Pellegrino [6] proposed the static
ROC. For a given positive integer N and an ini-
tial state x0, they consider the following optimization
problem.

(QP1)



































min
x[·],u[·],z[·]

N−1
∑

k=0

(

|Cx[k]|2 + R|u[k]|2
)

sub. to x[k + 1] = Ax[k] + bu[k],
z[k] = Lx[k] + Du[k] ∈ Z,

k = 0, 1, · · · , N − 1
x[0] = x0, x[N ] = 0

where C ∈ R
1×n and R is a positive number.

Using the optimal solution {(x̂[k + 1], û[k],
ẑ[k])}N−1

k=0 , they construct attractive regions
{X q(x0)}

N
q=1 (in this case, X q depends on x0).

Example 1 Let C = 0, R = 1 in (QP1), and

A =

[

1 1
0 1

]

, b =

[

0
1

]

, L =





1 0
0 1
0 0



 ,D =





0
0
1



 , (3)

H =

















1 0 0
−1 0 0
0 1 0
0 −1 0
0 0 1
0 0 −1

















, h =

















5
5
5
5
3
3

















. (4)

For q = 1, 2, 3, 4, N , N = 5 and x0 = [−2 −5]⊤, x0 =
[−3 −5]⊤, and x0 = [−4 − 5]⊤, we compute X q(x0).
In Fig. 1, we show {X q(x0)}

N
q=1, where the red, the

yellow, the green, the cyan, and the magenta regions
denotes X 1(x0), X 2(x0), X 3(x0), X 4(x0), and X 5(x0)
respectively. About the gray region we will mention it
later.

As we can see from Figure 1, attractive regions
X q(x0) depend on initial state x0. Note that x̃0
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Figure 1: Attractive regions {X q(x0)}
5
q=1 computed

by ROC method.

may belong to X q(x0) ∩ X q′(x′
0) for different (q, x0)

and (q′, x′
0). In this case, we have two control laws

u = f(x) and u = f ′(x), and x[q] = 0 if we adopt
u[k] = f(x[k]) and x[q′] = 0 if we adopt u[k] =
f ′(x[k]). This implies that the control law u = f(x) is
not the control law achieving the minimum convergent
time q (x[q] = 0), in general.

2.3. Problem Statement

Our problem is the following:

Problem 1 Given an integer N > 0. For each q =
1, 2, · · · , N , compute the maximal attractive region X q

satisfying for any x0 ∈ X q there exists an input uq

such that z[k;x0,uq] ∈ Z, k = 0, 1, · · · , q − 1 and
x[q;x0,uq] = 0, where

uq = [u[0] u[1] · · · u[q − 1]]⊤ ∈ R
q. (5)

Moreover, derive a piecewise linear state feedback
control law u = f(x).

By computing the maximal attractive regions
{X q}

N
q=1, we can achieve faster convergence to the ori-

gin than the ROC do for some initial state x0.

3. Main Results

3.1. Construction of XN

Given q ∈ {1, 2, · · · , N} and x[0] = x0. For each
k ∈ {0, 1, · · · , q}, the solution x[k] of (1) and z[k] are
represented by

x[k] = Akx0 + Ak−1bu[0] + · · · + bu[k − 1],

z[k] = LAkx0 + LAk−1bu[0] + · · · + Lbu[k − 1]

+ Du[k].

Since we assume that A is nonsingular, the boundary
condition that x[q] = 0 is represented by

x[q] = Aq(x0 + M quq) = 0, (6)

where

M q =
[

A−1b A−2b · · · A−qb
]

∈ R
n×q. (7)

The constraint Hz[k] ≤ h, k = 0, 1, · · · , q − 1 is repre-
sented by

aqx0 + T quq ≤ h = [h⊤ · · ·h⊤]⊤ ∈ R
qNc (8)

where aq =
[

(HL)⊤ (HLA)⊤ · · · (HLAq−1)⊤
]⊤

∈
R

qNc×n,

T q =











HD 0 · · · 0
HLb HD 0

...
...

. . .
...

HLAq−2b HLAq−3b · · · HD











∈ R
qNc×q

The maximal attractive region X q is characterized as
follows:

X q = {x0 : aqx0 + T quq ≤ h,

x0 + M quq = 0 for some uq}. (9)

Since (A, b) is a reachable pair and since A is nonsin-
gular,

rankM q =

{

q, q ≤ n,

n, q > n,
(10)

Therefore, M q is column full rank when q ≤ n and is
full row rank when q ≥ n, and we have the following:

Lemma 1 Let q < n and M q,L = (M⊤
q M q)

−1
M

⊤
q .

Then, for any x0 ∈ ImM q, the unique solution uq

of (6) is given by

uq = −M q,Lx0 (11)

and X q defined by (9) is given by

X q = {x0 = M qξ : (aq − T qM q,L)M qξ ≤ h}, (12)

which is the largest polyhedral set such that for any
x0 ∈ X q the input uq defined by (11) gives that z[k;
x0, uq] ∈ Z, k = 0, 1, · · · , q − 1 and x[q;x0,uq] = 0.

2

Lemma 2 Let q = n. Then for any x0 ∈ R
n, the

unique solution uq of (6) is given by

un = −M
−1
n x0 (13)

and X q defined by (9) is given by

Xn = {x0 : (aq − T qM
−1
q )x0 ≤ h}, (14)

which is the largest polyhedral set such that for any
x0 ∈ Xn the input un defined by (13) gives that z[k;
x0, uq] ∈ Z, k = 0, 1, · · · , n − 1 and x[n;x0,un] = 0.

2
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Lemma 3 Let q > n, M q,R = M
⊤
q (M qM

⊤
q )−1,

and P q ∈ R
q×(q−n) be a matrix whose column vectors

are basis of KerM q.
Then, for any x0 ∈ R

n, any solution uq of (6) is
given by

uq = −M q,Rx0 + P qξ, (15)

for some ξ ∈ R
(q−n). Let

Υq = {(x0, ξ) ∈ R
n × R

q : (aq − T qM q,R)x0

+ T qP qξ ≤ h}. (16)

We assume that Υq is bounded, 1 and nodeΥq =

{υq,j = (xq,j , ξq,j)}
Nq

j=1 is the set of node of polytope
Υq. Then, X q defined by (9) is given by

X q = conv {xq,1, xq,2, · · · , xq,Nq
}. (17)

Let nodeX q = {xq,j1 , · · · , xq,jmq
} is the set of vertices

of the polytope X q. Then, for any x0 ∈ X q there exists
{λi ∈ [0, 1]}

mq

i=1 such that

x0 =

mq
∑

i=1

λixq,ji
,

mq
∑

i=1

λi = 1. (18)

Define

uq =

mq
∑

i=1

λiuq,ji
, (19)

uq,ji
= −M q,Rxq,ji

+ P qξq,ji
, (20)

where υq,j = (xq,j , ξq,j) ∈ node Υq.
The polytope X q is the largest polytope such that for

any x0 ∈ X q the input uq defined by (19) gives that z[k;
x0, uq] ∈ Z, k = 0, 1, · · · , q − 1 and x[q;x0,uq] = 0.

2

We summarize above observations and get the fol-
lowing:

Theorem 1 Assume that N ≥ n and {X q}
n−1
q=1 are

defined by (12) and Xn is defined by (14). Moreover,
we assume that {Υq}

N
q=n+1 defined by (16) are bounded

and {X q}
N
q=n+1 are defined by (17).

Then, we have the following;
(a) The polytope X q is the largest polytope such that
for any x0 ∈ X q there exists a uq such that z[k; x0,
uq] ∈ Z, k = 0, 1, · · · , q − 1 and x[q;x0,uq] = 0.
(b) If x0 ∈ X q for some q < N − 1, then x0 ∈ X q+1.
Therefore, we have

X 1 ⊆ · · · ⊆ X q ⊆ · · · ⊆ XN . (21)

(c) If x0 ∈ X q for some q > 1, then x[1] ∈ X q−1. 2

1A sufficient condition that Υq is bounded is all elements of
x and u are elements of z.

For the system given in Example 1, we computed
{X q}

N
q=1 where N = 5. The gray region in Figure 1

is X 5, which is much larger than attractive regions
X 5(x0) computed by applying ROC.

Suppose that we computed polytopes {X q}
N
q=1 un-

der the assumptions in Theorem 1. Let

nq = dimX q. (22)

Note that nq ≤ q and nq < mq for all q = 1, 2, · · · , N ,
where mq is the cardinality of the nodes of X q. Since
h > 0 by the assumption, X p includes 0 ∈ R

n as an
interior point, and, hence, nq = n for all q = n+1, n+
2, · · · , N .

3.2. Control law

In this subsection, we will state how to determine
the control law u = f(x). If q ≤ n, then uq is defined
uniquely. On the other hand, when q > n, uq depends
on the choice of {λi ∈ [0, 1]}

mq

i=1 satisfying (18), which
is not unique in general. Let ∆q = X q\X q−1.

2 We

divide ∆q into simplexes {Sq,ℓ}
dq

ℓ=1, that is,

∆q =

dq
⋃

ℓ=1

Sq,ℓ, intSq,ℓ ∩ intSq,ℓ′ = ∅, ℓ 6= ℓ′ (23)

X q = X q−1 ∪





dq
⋃

ℓ=1

Sq,ℓ



 . (24)

Let nodeSq,ℓ = {xq,jℓ,i
}n+1

i=1 be the set of nodes of
the simplex Sq,ℓ, where (xq,jℓ,i

, ξq,jℓ,i
) ∈ ( nodeX q ∪

nodeX q−1). Then, for each x0 ∈ Sq, ℓ, there is a

unique λ ∈ R
n+1 such that x0 = X̃q,ℓλ, where

X̃q,ℓ =

[

xq,jℓ,1
xq,jℓ,2

· · · xq,jℓ,n+1

1 1 · · · 1

]

. (25)

Note that X̃q,ℓ ∈ R
(n+1)×(n+1) is nonsingular since

Sq,ℓ is a simplex. Therefore λ = X̃
−1

q,ℓx0. We define uq

by

uq = Uq,ℓX̃
−1

q,ℓx0, (26)

where

Uq,ℓ =
[

uq,jℓ,1
uq,jℓ,2

· · · uq,jℓ,n+1

]

(27)

uq,jℓ,i
= −M q,Rxq,jℓ,i

+ P qξq,jℓ,i
. (28)

We summarize as follows:

Theorem 2 Assume that the assumptions of Theo-

rem 1 is satisfied. Then, the polytope X q is the largest
polytope such that for any x0 ∈ X q there exists a uq

such that z[k; x0, uq] ∈ Z, k = 0, 1, · · · , q − 1 and
x[q;x0,uq] = 0, and input uq is given by (11) when
q < n, (13) when q = n, and (26) when q > n. 2

2We note here that X q−1 ⊆ X q because of Theorem 1, (b)
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For the system given in Example 1, we computed
{X q}

n
q=1 and {Sq,ℓ} for q = n+1, n+2, · · · , N , where

n = 2 and N = 5. In Figure 2, X 1 is a red line seg-
ment, X 2 is the yellow polytope, {S3,ℓ} are green sim-
plexes, {X 4,ℓ} are cyan simplexes, and {S5,ℓ} are ma-
genta simplexes. We also show {X q(x0)}

5
q=1 computed

by ROC in Figure 3, where x0 = [−2 5]⊤. In Fig-

ure 3, X 1(x0) is a red line segment, X 2(x0) is a yel-
low polytope, ∆3(x0) = X 3(x0)\X 2(x0) is divided into
green simplexes, ∆4(x0) = X 4(x0)\X 3(x0) is divided
into cyan simplexes, and ∆5(x0) = X 5(x0)\X 4(x0) is
divided into magenta simplexes. We can see that X 5

obtained our method is larger than X 5(x0). This is
the first contribution of our method.

Let x0 = [−2 4]. Note that x0 ∈ ∆4 in Figure 2,
and, hence, the trajectory x[k;x0,u4] obtained by our
method converges 0 by 4 steps. On the other hand,
x0 ∈ ∆5([−2 5]⊤) in Figure 3, and, hence, the trajec-
tory x[k;x0,u5] obtained by ROC need 5 steps con-
verges 0. Thus, the trajectory by our method con-
verges 0 by smaller steps than that of ROC. This is
the second contribution of our method.
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Figure 2: The partitioned state space and state tra-
jectory from point x[0] = [−2 4]⊤
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Figure 3: The partitioned state space and state tra-
jectory from point x[0] = [−2 4]⊤ by ROC method

4. Concluding Remark

In this paper, we assume that exact model of the
plant is given and there is no disturbance and noises.
However, in practice, we can not expect such a sit-
uation. Suppose that N > n and that x0 ∈ SN,ℓ

for some ℓ. According to the proposing scheme, we
have a input uN =

[

u[0] u[1] · · · u[N − 1]
]

. Sup-
pose that, like the model predictive control scheme, we
only apply u[0] to the system, and observe the state

x′
0 = x[1] at time 1. Note that x

[1]
0 might be dif-

ferent from x[1;x0,uN ] because of model errors, dis-
turbances or noises. But it is not so ambiguous that

we expect that x
[1]
0 ∈ XN−1 because of Theorem 1,

(c). Then, determine ℓ′ such that x
[1]
0 ∈ SN−1,ℓ′ , com-

pute uN−1 =
[

u′[0] u′[1] · · · u′[N − 2]
]

, and ap-
ply only u′[0] to the system. By repeating this process

N −n times, we can expect that x
[n]
0 = x[N −n] ∈ Xn.

However, since dimX q < n for q < n, it is not reason-
able to expect that x[N ] = 0 when there are model
errors, disturbances or noises. This is the point we
need to circumvent in future study.
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