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Abstract—Auto-correlation functions of low-density bi-
nary sequences generated by Bernoulli map and nonlinear
feedback shift registers are discussed in this paper. First,
we theoretically evaluate auto-correlation functions of low-
density chaotic binary sequences generated by Bernoulli
map based on chaos theory. Next, we numerically evaluate
auto-correlation functions of low-density periodic binary
sequences generated by nonlinear feedback shift registers
(NFSRs).

1. Introduction

Chaotic binary sequences with various correlation prop-
erties can be designed by using a class of chaotic maps
and binary functions [1]. Chaotic binary sequences can
be applied to CDMA communications, cryptosystems, and
Monte-Carlo simulations. Basically, in these applications,
chaotic binary sequences are designed as balanced se-
quences, that is, the probability of 1 (or 0) in the sequences
is equal to 1

2 .
On the other hand, LDPC (low density parity check)

codes [2], which have been attracting attention recently, is
specified by a parity-check matrix with mostly 0’s and rel-
atively few 1’s. One of methods to construct row (or col-
umn) vectors of such a parity-check matrix of LDPC codes
is to use random numbers. Chaotic sequences can also be
used for constructing LDPC codes [3].

In this paper, we first evaluate auto-correlation functions
of low-density chaotic binary sequences generated by the
Bernoulli map based on chaos theory. Next, we evaluate
auto-correlation functions of low-density periodic binary
sequences generated by nonlinear feedback shift registers
(NFSRs) which can be regarded as finite bit realization of
the Bernoulli map [4].

2. Low-Density Chaotic Binary Sequences Generated
by Bernoulli Map

Using a one-dimensional nonlinear difference equation
defined by

xn+1 = τ(xn), xn ∈ I = [d, e], n = 0, 1, 2, · · · , (1)

we can generate a chaotic real-valued sequence {xn}∞n=0,
where xn = τ

n(x) (x0 = x is an initial value). We trans-
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Figure 1: Bernoulli map
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Figure 2: An example of binary functions given by eq.(5)
(m = 3, i = 2)

form such a real-valued sequence into a binary sequence
{B(xn)}∞n=0 by using a binary function B(x) (∈ {0, 1}). The
theoretical auto-correlation function of such a binary se-
quence {B(xn)}∞n=0 is defined by

C(`; B) =
∫

I
(B(x) − 〈B〉)(B(τ`(x)) − 〈B〉) f ∗(x)dx, (2)

under the assumption that τ(x) has an invariant density
function f ∗(x), where 〈B〉 denotes the expectation of the
binary sequence {B(xn)}∞n=0 defined by

〈B〉 =
∫

I
B(x) f ∗(x)dx. (3)

In this paper, we also use the normalized auto-correlation
function defined by R(`; B) = C(`; B)/C(0; B).

Here, we use the Bernoulli map τ(x) defined by

τ(x) =
{

2x (0 ≤ x < 1
2 )

2x − 1 ( 1
2 ≤ x ≤ 1)

(4)
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Table 1: Theoretical normalized auto-correlation functions
R(`; B(3)

i )

` 1 2 3, · · ·
B(3)

0 3/7 1/7 0
B(3)

1 −1/7 −1/7 0
B(3)

2 −1/7 1/7 0
B(3)

3 −1/7 −1/7 0
B(3)

4 −1/7 −1/7 0
B(3)

5 −1/7 1/7 0
B(3)

6 −1/7 −1/7 0
B(3)

7 3/7 1/7 0

Table 2: Theoretical normalized auto-correlation functions
R(`; B(4)

i )

` 1 2 3 4, · · ·
B(4)

0 7/15 1/5 1/15 0
B(4)

1 −1/15 −1/15 −1/15 0
B(4)

2 −1/15 −1/15 1/15 0
B(4)

3 −1/15 −1/15 −1/15 0
B(4)

4 −1/15 −1/15 1/15 0
B(4)

5 −1/15 1/5 −1/15 0
B(4)

6 −1/15 −1/15 1/15 0
B(4)

7 −1/15 −1/15 −1/15 0
B(4)

8 −1/15 −1/15 −1/15 0
B(4)

9 −1/15 −1/15 1/15 0
B(4)

10 −1/15 1/5 −1/15 0
B(4)

11 −1/15 −1/15 1/15 0
B(4)

12 −1/15 −1/15 −1/15 0
B(4)

13 −1/15 −1/15 1/15 0
B(4)

14 −1/15 −1/15 −1/15 0
B(4)

15 7/15 1/5 1/15 0

which is one of the simplest piecewise linear chaotic maps
with the interval I = [0, 1] and f ∗(x) = 1. The map is
shown in Fig.1. As will be shown later, the Bernoulli map
can be approximated by NFSRs with finite bits.

Furthermore, we use binary functions defined by

B(m)
i (x) = Θ i

2m
(x) − Θ i+1

2m
(x) (i = 0, 1, · · · , 2m − 1), (5)

where m is a positive integer and Θt(x) is a threshold func-
tion defined by

Θt(x) =
{

1 (x ≥ t)
0 (x < t). (6)

An example of such binary functions is shown in Fig.2,
where m = 3 and i = 2 (i.e., B(3)

2 (x)). Since the invari-
ant density function of the Bernoulli map is f ∗(x) = 1,
the expectation (probability of 1) of the binary sequences
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(c) i = 2

Figure 3: Numerical results of normalized auto-correlation
functions R(`; B(3)

i )

{B(m)
i (xn)}∞n=0 is given by 〈B(m)

i 〉 = 2−m, which implies the
sequences are low-density binary sequences for m ≥ 2.

We theoretically evaluate the low-density auto-
correlation functions of the binary sequences {B(m)

i (xn)}∞n=0
using Perron-Frobenius operator [5]. Consequently, the
normalized auto-correlation functions are given by

R(`; B(m)
i ) =


2m−` − 1
2m − 1

(b i
2` c = i mod 2m−`)

− 1
2m − 1

(b i
2` c , i mod 2m−`)

0 (` ≥ m),

(7)

where bxc denotes the largest integer not exceeding x. Ta-
bles 1 and 2 show the results for the cases m = 3 and m = 4,
respectively. From these tables, we find that there are bi-
nary sequences with positive and negative auto-correlations
but there are no uncorrelated sequences.

We also numerically evaluate the auto-correlation func-
tions of the binary sequences {B(m)

i (xn)}N−1
n=0 using a com-

puter with 64-bit floating operation, where we set N =

1, 000, 000. Figures 3 and 4 show the numerical results
with the theoretical functions. The numerical results are in
good agreement with the theoretical ones.
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(b) i = 1
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(c) i = 2
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(d) i = 5

Figure 4: Numerical results of normalized auto-correlation
functions R(`; B(4)

i )

3. Low-Density Periodic Binary Sequences Generated
by NFSRs

Figure 5 shows a k-stage NFSR whose feedback cir-
cuit is nonlinear (a combinational logic circuit). Maximal-
period binary sequences of period 2k generated by k-stage
NFSRs are called de Bruijn sequences [6].

Let us transform a state of the register at time n, denoted
by {ak−1(n), ak−2(n), · · · , a0(n)}, into a decimal integer x̂n ∈
[0, 2k − 1] as

x̂n = a0(n) · 2k−1 + a1(n) · 2k−2 + · · · + ak−1(n) · 20. (8)

Plotting (x̂n, x̂n+1) for an NFSR, we can obtain a one-
dimensional (1-D) map (so called, return map). An ex-
ample of such maps is shown in Fig.6, where k = 4. It is

output

k−1a   (n) k−2a   (n) 1a  (n) 0a  (n)

nonlinear feedback
(combinational logic circuit)

Figure 5: k-stage nonlinear feedback shift register

x
n

0

1

5

6

7

8

9

10

11

12

13

14

15

4

3

2

0 1 2 3 4 5 6 7 8 9 1 110 13 14 1512

x
n
+
1

^

^
Figure 6: An example of 1-D return map of NFSRs (k = 4)
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Figure 7: An example of binary functions given by eq.(9)
(m = 3, i = 2)

easy to understand that the shapes of such 1-D return maps
are similar to the Bernoulli map denoted by solid lines,
which implies that the NFSRs approximate the Bernoulli
map with finite bits [4].

Noting that an integer sequence {x̂n}2
k−1

n=0 generated by
a k-stage NFSR corresponds to a real-valued sequence
{xn}∞n=0 generated by the Bernoulli map, we define bi-
nary functions for such a maximal-period integer sequence
{x̂n}2

k−1
n=0 by

B̂(m)
i (x) = Θ i

2m 2k (x) − Θ i+1
2m 2k (x) (i = 0, 1, · · · , 2m − 1), (9)

where m ≤ k. An example of such binary functions is
shown in Fig.7, where m = 3 and i = 2 (i.e., B̂(3)

2 (x)). Note
that B̂(m)

i (x) can be realized by a combinational logic circuit
with m inputs, where m inputs are the most m significant
bits of the NFSR, that is, {a0(n), a1(n), · · · , am−1(n)}. For
example, the binary function B̂(3)

2 (x) in Fig.7 can also be
written as

B̂(3)
2 (x) =

{
1 if a0(n)a1(n)a2(n) = 010
0 otherwise. (10)

Since each integer in {0, 1, · · · , 2k − 1} appears once in
a period of a maximal-period integer sequence {x̂n}2

k−1
n=0
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Table 3: Normalized auto-correlation values R̂(`; B̂(3)
i ) for

some de Bruijn sequences of period 64 generated by 6-
stage NFSRs.

i ` DB1 DB2 DB3 chaos

1 3/7 3/7 3/7 3/7
0 2 1/7 1/7 1/7 1/7

(000) 3 0 0 0 0
4 0 0 −1/7 0

1 −1/7 −1/7 −1/7 −1/7
1 2 −1/7 −1/7 −1/7 −1/7

(001) 3 0 0 0 0
4 −1/7 −1/7 1/7 0

1 −1/7 −1/7 −1/7 −1/7
2 2 1/7 1/7 1/7 1/7

(010) 3 0 0 0 0
4 −1/7 −1/7 0 0

1 −1/7 −1/7 −1/7 −1/7
3 2 −1/7 −1/7 −1/7 −1/7

(011) 3 0 0 0 0
4 1/7 −1/7 1/7 0

1 −1/7 −1/7 −1/7 −1/7
4 2 −1/7 −1/7 −1/7 −1/7

(100) 3 0 0 0 0
4 −1/7 −1/7 1/7 0

1 −1/7 −1/7 −1/7 −1/7
5 2 1/7 1/7 1/7 1/7

(101) 3 0 0 0 0
4 1/7 1/7 0 0

1 −1/7 −1/7 −1/7 −1/7
6 2 −1/7 −1/7 −1/7 −1/7

(110) 3 0 0 0 0
4 1/7 1/7 −1/7 0

1 3/7 3/7 3/7 3/7
7 2 1/7 1/7 1/7 1/7

(111) 3 0 0 0 0
4 −1/7 −1/7 −1/7 0

of period 2k, the probability of 1 in a binary sequence
{B̂(m)

i (x̂n)}2k−1
n=0 (or the average of the sequence) is equal

to 2−m, which also corresponds to the binary sequence
{B(m)

i (xn)}∞n=0 generated by the Bernoulli map. Note that
the number of 1’s in the sequence {B̂(m)

i (x̂n)}2k−1
n=0 is exactly

equal to 2k−m.
Now we define the periodic auto-correlation function of

a binary sequence {B̂(m)
i (x̂n)}N−1

n=0 of period N = 2k whose
average is 2−m by

Ĉ(`; B̂(m)
i ) =

1
N

N−1∑
n=0

(B̂(m)
i (x̂n)−2−m)(B̂(m)

i (x̂(n+`) mod N−2−m).

(11)

Also, the normalized periodic auto-correlation function is
defined by R̂(`; B̂(m)

i ) = Ĉ(`; B̂(m)
i )/Ĉ(0; B̂(m)

i ). We numeri-
cally evaluate the periodic auto-correlation functions of the
low-density binary sequences {B̂(m)

i (x̂n)}2k−1
n=0 generated by

k-stage NFSRs, where k = 6 and m = 3. Table 3 shows the
normalized auto-correlation values R̂(`; B̂(3)

i ) (` = 1 ∼ 4)
for three different de Bruijn sequences (denoted by “DB1”,
DB2”, and “DB3”) of period 64. In the table, the column
denoted by “chaos” shows the theoretical values given in
Table 1. There are some different auto-correlation values
at ` = 4 for the three de Bruijn sequences. However, the
auto-correlation values for ` ≤ 3 are equal to each other
and they are exactly equal to the theoretical values.

4. Conclusion

We theoretically and numerically evaluate auto-
correlation functions of low-density chaotic binary
sequences generated by Bernoulli map. We also numer-
ically evaluate auto-correlation functions of low-density
periodic binary sequences generated by NFSRs. It is
remarkable that the auto-correlation values of low-density
periodic binary sequences generated by NFSRs are
completely equal to the theoretical ones for small time
delays. The application of such periodic low-density
binary sequences to LDPC codes is a future topic.

Acknowledgments
This work was partly supported by Grant-in-Aid for Sci-

entific Research (C) (No.23560460) from Japan Society for
the Promotion of Science.

References

[1] A. Tsuneda, “Design of Binary Sequences With Tun-
able Exponential Autocorrelations and Run Statis-
tics Based on One-Dimensional Chaotic Maps,” IEEE
Trans. Circuits Syst. I, vol.52, no.2, pp.454–462,
2005.

[2] R. G. Gallager, “Low-Density Parity-Check Codes,”
IRA Trans. Inf. Theory, vol.8, no.1, pp.21–28, 1962.

[3] S. Kozic, M. Hasler, “Low-Density Codes Based on
Chaotic Systems for Simple Encoding,” IEEE Trans.
Circuits Syst. I, vol.56, no.2, pp.405–415, 2009.

[4] A. Tsuneda, Y. Kuga, and T. Inoue, “New Maximal-
Period Sequences Using Extended Nonlinear Feed-
back Shift Registers Based on Chaotic Maps,” IE-
ICE Trans. Fundamentals, vol.E85-A, no.6, pp.1327–
1332, 2002.

[5] A. Lasota and M. C. Mackey, Chaos, Fractals, and
Noise, Springer-Verlag, 1994.

[6] S. W. Golomb, Shift Register Sequences, revised ed.,
Aegean Park Press,1982.

- 898 -




