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Abstract—This paper presents a derivation method of
the bifurcation point for the periodic solution in an impact
oscillator with periodic local cross-section. First, we ex-
plain the impact model and construct the Poincaré map.
The construction of the Poincaré map has been subjected
by considering presence or absence of the impact. Next, we
show the Jacobian matrix and specify the derivative of the
Poincaré map to calculate the bifurcation point. Finally, the
proposed method is applied for an impact oscillator with
periodic local cross-section.

1. Introduction

The bifurcation analysis and the stability analysis are im-
portant for understanding the qualitative property of the
nonlinear dynamic systems. Therefore, many researchers
have been analyzed the smooth system since old times [1].
In particular, AUTO and BunKi are useful tools for tracking
a bifurcation point in these systems [2, 3]. However, these
tools may seem difficult to apply to the switching system
depending on its state or a periodic interval which has the
interrupted characteristics.

On the other hand, versatile tools for the switching sys-
tem have not developed. Also, the impact oscillator, which
is one of the switching system is received attention in re-
cent years. The impact oscillator has the characteristics
that the solution jumps when the trajectory hits the bor-
der. Above all, in particular, many systems with moving
obstacle are studied in mechanical system. For instance,
gear ratting [4, 5], rotor-casing dynamical system [6], im-
pact damper [7], and so on. In order to analyze these sys-
tems, Yoshitake proposed the shooting method [8] which
can analyze the stability of the periodic solution. However,
there are no method to calculate the bifurcation point di-
rectly. Therefore, for the purpose of the development of
the bifurcation analysis, we have proposed a calculation
method of bifurcation point for an impact oscillator with
periodic function in previous work [9]. Here, various pe-
riodic solutions are observed in the impact oscillators with
moving obstacle, but the method in Ref. [9] is only effective
against period-1 solution. Hence, we present a derivation
method of the bifurcation point for the periodic solution

in an impact oscillator with periodic local cross-section in
this paper. The proposed method can calculate the bifurca-
tion point for not only period-1 solution but also periodic
solution.

First of all, we show the physical model and explain its
dynamics. Furthermore, the Poincaré map is constructed
by considering presence or absence of the impact. Next,
the Jacobian matrix and its elements are described. Then,
we specify the derivative of the Poincaré map to calculate
the bifurcation point of the periodic solution. Finally, we
apply this method for an impact oscillator with periodic
local cross-section to confirm the validity of the method.

2. An impact oscillator with periodic local cross-section

We apply the method to an impact oscillator with peri-
odic local cross-section shown in Fig. 1. This system is
modelled by using a spring, damper and mass, respectively
and is equivalent to the rigid overhead wire-pantograph
model [10]. Also, the overhead wire model represents the
rail corrugation, which is described as the periodic vibra-
tion. Note that the mass of the pantograph model impacts
the overhead wire model. The considered model can be
described by the following differential equations
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Figure 1: A rigid overhead wire-pantograph system.
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Figure 2: Example of the Period-2 solution.

where ζ, x, and v in the pantograph model are expressed
in a damping ratio, the displacement, and the velocity. The
normalized equation of the overhead wire model is given
by

S (t) = ε sinΩt + 1, (2)

where S (t), ε, and Ω are expressed in the displacement of
rigid overhead wire, the amplitude, and the angular fre-
quency here. We show the example of the Period-2 solution
in Fig. 2. When x(t) reaches to S (t), the velocity of mass
changes as

v+ = −αv− + (1 + α)
dS (t)

dt
. (3)

Note that v+ is the velocity after the impact, and v− is the
previous velocity. Also, α is a coefficient of restitution be-
tween the pantograph model and the overhead wire model.

3. Analytical method and result

3.1. Poincaré map

We calculate the bifurcation point in the proposed sys-
tem. First of all, the solutions can be described by the fol-
lowing two-dimensional system
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









dx
dt
= f (x, v,λ)

dv
dt
= g(x, v,λ)

, (4)

where the parameters t, x, v and λ satisfy T ∈ R, x, v ∈ R
2,

f , g : R
2 → R

2. Now, Eq. (4) is written as
{

x(t) = ϕ(t; x0, v0,λ), x(0) = x0

v(t) = φ(t; x0, v0,λ), v(0) = v0
(5)

where x0 and v0 means the initial value at time t = 0. Next,
we define the following local section Π ∈ R

2 by using
scalar function q : R

2 ∈R
2.

Π = {x, v ∈ R
2 : q(x, v) = 0, q : R

2 → R
2}, (6)

q(t + T ; x, v) = q(t; x, v). (7)

Furthermore, the maps can be categorized by the presence
or absence of the impact of trajectory in kT ≤ t < (k + 1)T .
First, when the trajectories are smooth in this range, the
map M[1]

k can be described as

M[1]
k : R

2 → R
2, (8)

xk 7→ xk+1 = (ϕ(T ; xk, vk,λ), φ(T ; xk, vk,λ))>.

Next, we consider the case whose trajectories include the
impact. If x reaches to Π, the velocity v is jumped by the
map P. The map P is written as follows:

P : R
2 → R

2,

xka− = (ϕ(τk; xk, vk,λ), φ(τk; xk, vk,λ))> (9)

7→ xka+ =

(

xka−,−αvka− + (1 + α)
dS (t)

dt

)>

where τk denotes the time when the solution reaches to Π.
The discretized solutions xk are expressed as

xk = (ϕ(T − τk; xka−, vka+,λ), φ(T − τk; xka−, vka+,λ))>.
(10)

Moreover, we define the maps around the time of the im-
pact as follows:

MkA : R
2 → Π, xk 7→ xka−

MkB : Π → R
2, xka+ 7→ xk+1. (11)

Consequently, the map M[2]
k is given by

M[2]
k : R

2 → R
2

xk 7→ xk+1 = MkB ◦ P ◦ MkA.
(12)

Additionally, the Poincaré map of period-m can be ex-
pressed by combining eq.(9) and eq.(12).

M : R
2 → R

2

x0 7→ xm = M[i]
m−1 ◦ · · · ◦ M[i]

1 ◦ M[i]
0 ,

i = 1 or 2.
(13)

3.2. Jacobian matrix

A fixed point of the Poincaré map is given by

x0 − M(x0) =















x0 − [1 0]M(x0, v0)

v0 − [0 1]M(x0, v0)















= 0. (14)

The characteristic equation for the fixed point is expressed

χ(µ) = det |µI2 − DM(x0)| . (15)

Therefore, simultaneous equation of a fixed point and the
characteristic equation is written as

F(x0, v0, λa) =


























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x0 − [1 0]M(x0, v0)

v0 − [0 1]M(x0, v0)

χ(µ)





























= 0. (16)
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Here, we decide the characteristic multiplier by the type of
bifurcation. For example, if we calculate the bifurcation
point of the period-doubling bifurcation, the characteristic
multiplier is fixed as −1.0. On the other hand, in case of the
saddle-node bifurcation, we fix the characteristic multiplier
as 1.0. Also, Eq. (16) can be calculated for the unknown
variables, x0, v0, and a bifurcation parameter λ by using
Newton’s method. Then, the Jacobian matrix of F is

DF(x0, v0, λ) =




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
















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
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
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1 −
∂M
∂x0

−
∂M
∂v0

−
∂M
∂λ

−
∂M
∂x0

1 −
∂M
∂v0

−
∂M
∂λ

∂χ(µ)
∂x0

∂χ(µ)
∂v0

∂χ(µ)
∂λ














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


















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





















. (17)

Here, we discuss the elements of eq.(17). The derivative
of the Poincaré map depending on the initial value is ex-
pressed as

DM(x0) =
∂M
∂x0

=

m
∏

k=1

∂Mm−k

∂xm−k
(18)

where the ∂Mk/∂xk can be grouped by the presence or ab-
sence of the impact of trajectory per period. In case of no
impact per period, ∂Mk/∂xk is written as follows:
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. (19)

On the other hand, when the trajectories have the impact,
∂Mk/∂xk is shown as


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(20)

Furthermore,
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(21)

We should remark that the function

q(τk(xk, vk); xk, vk,λ) = 0 (22)

is differentiable for xk. Hence, ∂τk/∂xk and ∂τk/∂vk can
be obtained. Also, we can differentiate other elements in
much the same way.

3.3. Application result

We show the application result of our method in Table
1 which represents the bifurcation points for various of Ω
and ζ. PDm in the table indicate the period-doubling bi-
furcation for the period-m solutions. The bifurcation point
can be obtained by solving Eq.(17). Next, Table 2 shows
the result in the stability analysis of the periodic solution
with period-1 and period-2. This table can be calculated by
solving Eq. (14), (15). Also, Fig. 3 is the one-parameter
bifurcation diagram upon varying the bifurcation parame-
ter Ω from Ω = 6.0 to Ω = 6.45. Each values of Ω labeled
by (a), (b), and (c) in Fig. 3 correspond to Fig. 4 which
indicates the phase planes. The points in the phase planes
are the periodic solution. Period-1 solution, period-2 solu-
tion, and period-4 solution are observed before or after the
bifurcation point. If ζ = 0.4, then the value of Ω in Table 1
can be obtained in correspondence to Table 2 and Fig. 3.

4. Conclusion

In this paper, we have proposed a derivation method of
the bifurcation point for the periodic solution in an impact
oscillator with periodic local cross-section. First, we de-
fined the Poincaré map to express the fixed point and the
characteristic equation. Next, we showed the Jacobian ma-
trix and the derivative of the Poincaré map in order to calcu-
late the bifurcation point. Finally, we applied this method
for an impact oscillator with periodic local cross-section,
and we could confirm the validity of this method. The fu-
ture work is establishment of the method response to the
impact oscillator.

Acknowledgments

This research is partially supported by the Aihara Inno-
vative Mathematical Modelling Project, the Japan Society
for the Promotion of Science (JSPS) through the ”Funding
Program for World-Leading Innovative R&D on Science
and Technology (FIRST Program),” initiated by the Coun-
cil for Science and Technology Policy (CSTP).

- 893 -



Table 1: Calculation of the bifurcation point ( α = 0.5, ε = 0.068).

Period-1 Period-2
ζ Ω µ1 µ2 Remarks Ω µ1 µ2 Remarks

0.2000 5.8216 -0.1613 -1.0000 PD1 6.0818 -0.0273 -1.0000 PD2

0.3000 5.9871 -0.1331 -1.0000 PD1 6.2534 -0.0187 -1.0000 PD2

0.4000 6.1459 -0.1103 -1.0000 PD1 6.4185 -0.0130 -1.0000 PD2

0.5000 6.2983 -0.0922 -1.0000 PD1 6.5773 -0.0092 -1.0000 PD2

0.6000 6.4446 -0.0776 -1.0000 PD1 6.7299 -0.0066 -1.0000 PD2

Table 2: Calculation of the characteristic multiplier ( α = 0.5, ε = 0.068, ζ = 0.4).

Period-1 Period-2
Ω µ1 µ2 Remarks Ω µ1 µ2 Remarks

6.1350 -0.1123 -0.9803 Stable 6.4050 -0.0145 -0.8923 Stable
6.1400 -0.1114 -0.9893 Stable 6.4100 -0.0139 -0.9318 Stable
6.1450 -0.1105 -0.9983 Stable 6.4150 -0.0132 -0.9715 Stable
6.1459 -0.1103 -1.0000 PD1 6.4185 -0.0130 -1.0000 PD2

6.1500 -0.1096 -1.0072 Unstable 6.4200 -0.0129 -1.0112 Unstable
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Figure 3: One-parameter bifurcation diagram (α = 0.5, ε =
0.068, ζ = 0.4).
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