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Abstract—We discuss the bifurcation structure of oscil-

lation death and chaos generated in a weakly driven BVP

oscillator where the parameter values are chosen such that

a stable focus and a stable relaxation oscillation coexist in

close proximity when no perturbation is applied. Chaos

and oscillation death coexist in the weakly driven BVP os-

cillator at B1 = 0.002 where B1 is an amplitude of the forc-

ing term. A sudden disappearance of a chaotic oscillation

is confirmed as B1 increases, and only oscillation death be-

comes an attractor. The basin of oscillation death is derived

numerically. The boundaries of the basin are extremely

complex. When we increase B1 a little, it is found that the

basin becomes extremely large, and the solutions for all ini-

tial conditions converge to oscillation death at B1 = 0.004.

It means that chaos drastically disappears when the ampli-

tude of the forcing term is extremely weak.

1. Introduction

The autonomous Bonhoeffer-van der Pol (BVP) circuit

is a fundamental oscillator that generates a limit cycle. It

has an additional linear resistor in series with the inductor,

compared with the van der Pol oscillator. This difference

seems to be marginal at first glance. However, there is a

noteworthy difference in these two oscillators. It is pointed

out by Rabinovitch and Rogachevskii.[1] that a subcriti-

cal Andronov-Hopf bifurcation (AHB) can occur when the

linear resistance is chosen to be larger, whereas only a su-

percritical AHB is possible in the van der Pol oscillator.

How is the BVP dynamics influenced by a weak periodic

perturbation? Notably complex dynamical structures are

expected to emerge because the stable focus and the stable

relaxation oscillation coexist in close proximity, and the so-

lution may alternate between the focus and the relaxation

oscillation under weak periodic perturbation. Actually, it

generates a rich variety of interesting phenomena such as

chaos with unusually complicated waveforms and complex

mixed-mode oscillations[2, 3]. Rabinovitch et al. has not

paid attention to such a situation. Therefore, the analysis of

such a simple dynamics that exhibits complex bifurcations

has just begun[2, 3].

Sekikawa et al. [3] have analyzed this oscillator, and

have found a sudden change from chaos to oscillation death

as a parameter is varied. Strictly speaking, “oscillation

death” referred here is not a stable equilibrium but an ex-

tremely weak oscillation because the dynamics is nonau-

tonomous and has a forcing term. The stable relaxation os-

cillation, which exists when no perturbation is applied, dis-

appears subject to extremely weak periodic perturbation.

However, this situation has not yet been analyzed in [3].

In this paper, we will pay attention to “oscillation death

in non-autonomous systems” Sekikawa et al. discovered[3]

in the following weakly driven BVP oscillator:
{

εẋ = y − (−x + x3)

ẏ = −x − k1y + B0 + B1 sinωτ,
(1)

where ε and B1 are assumed to be small. The oscillator has

been studied intensively because the driven BVP oscillator

is known as a simplified Hodgkin-Huxley model[4, 5, 6, 7,

8]. It must be noted that Eq. (1) is an extremely simple

equation that generates chaos and related bifurcation phe-

nomena because it consists of a natural bistability gener-

ated by a subcritical AHB and an extremely weak periodic

forcing term. In this equation, chaos is observed when the

amplitude of the forcing term B1 is extremely weak such as

B1 = 0.002. The generation of chaos is confirmed by cal-

culating the largest Lyapunov exponent. Such chaos that

appears under extremely weak periodic perturbation is not

rare in slow-fast systems[3]. Slow-fast systems refer to a

dynamics where one of the state variables x moves faster

than the other state variable(s) except in the neighborhood

of the nullcline ẋ = 0. The step size h = 2π/(ω/1024)

is sufficient small because the reasonable bifurcation sets

have been derived using Runge-Kutta solver[3].

At B1 = 0.002 and ω = 1.35, at least, chaos and oscil-

lation death coexist. Sekikawa et al. succeeded to explain

using bifurcation theory that oscillation death disappears

for large B1. This phenomenon can be understandable in-

tuitively. However, Sekikawa et al. do not at all analyze

the birth of oscillation death. We numerically investigate

the set of initial conditions whose attractors become oscil-

lation death. The set of initial conditions is very thin at

B1 = 0.002. The boundary of the set is extremely com-

plex. As the B1 is increased until B1 = 0.004, however,

all solutions at any initial conditions converge to oscilla-

tion death according to our numerical results. Chaos that

exist at B1 = 0.003 is merged into oscillation death, and is

missing at B1 = 0.004.
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2. Circuit Setup of the BVP oscillator and a subcritical

Andronov-Hopf bifurcation
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Figure 1: Two stable attractors when no perturbation is ap-

plied (k1 = 0.9 and B0 = 0.21).

First, we consider the case where no perturbation is ap-

plied to the circuit, namely, B1 = 0. As mentioned in the

Introduction, the BVP oscillator contains a linear resistor

in series with the inductor, compared with the van der Pol

oscillator. The existence of the linear resistance seems to

be insignificant and marginal at first glance. However, a

crucial bifurcation occur in the autonomous BVP oscillator

due to the presence of this resistor. Rabinovitch and Ro-

gachevskii pointed out that the autonomous BVP oscillator

has a richer dynamics compared with the van der pol os-

cillator. They discovered that a subcritical Andronov Hopf

bifurcation can take place in the presence of the linear re-

sistor, whereas only a supercritical AHB is possible in the

van der Pol oscillator[1].

Figure 1 shows the two attractors when B1 = 0. One is a

stable relaxation oscillation and the other is a stable focus.

The stable focus is plotted and the relaxation oscillation is

drawn with a solid curve. The nullclines are also drawn

with dashed curves. The interesting bifurcation occur due

to the presence of larger k1.

3. Analysis of the BVP Oscillator under weak periodic

perturbation

Now we ask how the circuit dynamics is influenced by

weak periodic perturbation because a stable focus and a

stable relaxation oscillation coexist when no perturbation

is applied. In such a system, if weak periodic perturba-

tion is applied, complex behaviors are expected to emerge

because the stable focus and the stable relaxation oscilla-

tion coexist in close proximity to each other. If the weak

periodic perturbation is applied, the solution will alternate

between the stable focus and the relaxation oscillation by
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(a) One-parameter bifurcation diagram.
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(b) Graph of the largest Lyapunov exponent.

Figure 2: One-parameter bifurcation diagram and the cor-

responding graph of the largest Lyapunov exponent where

B1 is varied. The initial condition is (x0, y0) = (3, 3)

(k1 = 0.9, B0 = 0.21 and ω = 1.35).

the weak periodic perturbation. Actually, the generation

of complex bifurcations such as complicated chaos[3] and

complex mixed-mode oscillations[2] has been reported re-

cently.

In this paper, we pay attention to chaos and oscil-

lation death generated in Eq. (1) that Sekikawa et al.

discovered[3]. The existence of oscillation death in this

oscillator was first pointed out by them. They analyzed the

disappearance of oscillation death and sudden emergence

of chaotic oscillation that occurs around B1 = 0.04. In

this paper, we investigate the disappearance of chaotic os-

cillations and the appearance of oscillation death generated

around B1 = 0.003. Much smaller B1 than that in discussed

in [3] is investigated in this paper.

Since the forcing term is periodic, the Poincaré mapping

is naturally defined as follows:

Tσ : R
2 → R2

(x, y)⊤ 7→ Tσ(x, y)
⊤ ≡ ϕ(2π/ω; (x, y)⊤, σ),

(2)
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(a) One-parameter bifurcation diagram.
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(b) Graph of the largest Lyapunov exponent.

Figure 3: One-parameter bifurcation diagram and the

corresponding largest Lyapunov exponent where B1 is

varied(k1 = 0.9, B0 = 0.21 and ω = 1.35). The initial

condition is (x0, y0) = (0.555688,−0.384098) that is a sta-

ble equilibrium when no perturbation is applied.

where the superscript⊤ denotes the transpose of the vector,

ϕ(τ) is the solution, and σ is the bifurcation parameter.

Figure 2 (a) and (b) show a one-parameter bifurcation

diagram of Tσ and the graph of the corresponding largest

Lyapunov exponent λ. The largest lyapunov exponent

is calculated by the algorithm proposed by Shimada and

Nagashima[9]. The initial condition (τ, x, y) = (0, x0, y0)

is chosen at the outer side of the stable relaxation os-

cillation that exists when no perturbation is applied, i.e.,

(x0, y0) = (3, 3). Within the range of 0 < B1 < Bc ≃ 0.001,

λ = 0. It means that the two-torus is stable for weak pertur-

bation and that quasi-periodic attractor is generated in this

range. Such a structure is widely observed in the driven

oscillators[10]. A phase-locking occurs at B1 ≃ 0.00102.

From the graph of the largest Lyapunov exponent, it is un-

derstood that period-doubling cascades occur. Then, the

largest Lyapunov exponent becomes positive, and chaos

appears after the accumulation of the period-doubling cas-

cades. Chaos can be observed near B1 = 0.002. The gener-

ation of chaos for such small force is not rare in slow-fast

dynamics[3]. The tendency becomes more conspicuous for

smaller ε from our experience.

After the usual route to chaos, oscillation death appears.

Oscillation death in this circuit has been first reported by

Sekikawa et al.[3]. It is noteworthy that the stable relax-

ation oscillation that exists when no perturbation is applied,

has already disappeared at B1 = 0.004, and only oscillation

death remains. The reason why the oscillations disappear

for such extremely weak periodic perturbation, has not yet

been clarified.

According to the numerical results, oscillation death al-

ways exists in the parameter range B1 ∈ [0, 0.01]. The

one-parameter bifurcation diagram and the corresponding

graph of the largest Lyapunov exponent are presented in

Fig. 3, where the initial condition is given by (x0, y0) =

(0.555688,−0.384098) which is a stable focus when no

perturbation is applied. In Fig. 3, only the initial condi-

tion is different from the one of Fig. 2. Neither chaos nor

relaxation oscillation is observed in Fig. 3. We can obtain

no information and no traces about the disappearance of

chaos mentioned above, from the one-parameter bifurca-

tion diagram and the graph of the largest Lyapunov expo-

nent shown in Fig. 3 as if no influence is generated to the

state of oscillation death.

4. Basin of Oscillation Death

In this section, we derive a basin for oscillation death.

Namely, we investigate the set of initial conditions whose

attractor becomes oscillation death. We concentrate our at-

tention to two cases: B1 = 0.002 and B1 = 0.004.

First, we present the case of B1 = 0.002. As men-

tioned in the previous section, at least, chaotic attractor and

oscillation death coexist. We investigate the initial state

whose attractor is oscillation death. The points are plotted

if T 1,000σ (x0, y0) converges to oscillation death, where T
1,000
σ

is a 1,000 times composite of Tσ. Figure 4 shows the basin.

The condition near the boundaries are very complex. The

patterns of the complex upper basin and the lower basin

could be different.

Figure 5 shows the basin for oscillation death with B1 =

0.004. As the parameter B1 is increased up to 0.004, all so-

lutions which have any initial condition converge to oscil-

lation death as far as numerical results are concerned. The

entire surface are completely shaded, which is predicted by

Figs. 2 and 3. However, we could not clarify what kind

of bifurcations occur and how chaotic attractor disappears

between B1 = 0.002 and 0.004.

5. Concluding Remarks

We investigated a weakly driven Bonhoeffer-van der Pol

oscillator where the parameter values were chosen such
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Figure 4: Complicated basin (k1 = 0.9, B0 =

0.21 and ω = 1.35). (a) Upper part of the basin

x0[−0.5, 0.5], y0[−0.15,−0.14] Grid mesh:500 × 500. (b)

Lower part of the basin x0[−0.5, 0.5], y0[−0.414,−0.4]

Grid mesh:500 × 500.

that a stable focus and a stable relaxation oscillation coex-

isted in close proximity when no perturbation was applied.

Chaotic behavior was observed when the forcing term was

small. However, this chaos was submerged by oscillation

death although the periodic perturbation was very weak.

The basin of oscillation death was investigated. When os-

cillation death and chaos coexist, the boundary of the basin

is remarkably complex. However, when B1 = 0.004, any

solution converged to oscillation death. We could not un-

derstand how chaotic oscillations disappeared and how the

solution arrived at the oscillation death. To clarify the

mechanism of the disappearance of chaos under extremely

weak perturbation is our interesting future research topic.
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