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1. Main results

We present new algorithms for computing verified er-
ror bounds for least squares problems and underdetermined
linear systems. In contrast to previous approaches the new
methods do not rely on normal equations and are applicable
to sparse matrices. This paper summarizes some results; a
full paper was published in [7].

Algorithms based on normal equations are available in
INTLAB [6]. For an m × n-matrix they require O([m +
n]3) floating-point operations. Therefore, larger problems
are not tractable, in particular because the sparsity of the
matrices involved cannot be taken advantage of.

For underdetermined linear systems, i.e. Ax = b with
A ∈ Rm×n and m < n, Miyajima [4] proposed a faster al-
gorithm requiring O(mn2) operations. The challenge is to
obtain verified bounds in a computing time proportional to
that needed for an approximate solution, namely O(m2n)
operations for underdetermined linear systems and O(mn2)
operations for least squares problems.

Our key to obtain fast algorithms are a number of per-
turbation bounds. A matrix of floating-point numbers may
be nearly orthogonal but is, in general, not truly orthogo-
nal. The distance to orthogonality is estimated by certain
lemmas like the following.

Lemma 1 Let X ∈ Rm×n and p ∈ {1, 2,∞} be given, and
suppose ∥I − XT X∥p ≤ α < 1. Then m ≥ n, X has full rank,
and

∥X+ − XT ∥2 ≤
α

√
1 − α

for p = 2 . (1)

Moreover, for any B ∈ Rm×k with k ≥ 1,

∥(X+ − XT )B∥p ≤
α∥XT B∥p

1 − α for p ∈ {1, 2,∞} . (2)

Lemma 2 Let A ∈ Rm×n and P ∈ Rn×m with m ≥ n and
p ∈ {1, 2,∞} be given, and suppose ∥I − PA∥p ≤ α < 1.
Then A and P have full rank, and

∥A+∥p ≤
φ∥P∥p
1 − α (3)

with φ = 1 for p = 2, and φ =
√

m+1
2 for p ∈ {1,∞}.

The new methods basically compute floating-point ap-
proximations, and then estimate the error to the true solu-
tion based on lemmas as above. A similar technique was
used by Miyajima for underdetermined linear systems.

Lemma 3 (Miyajima [4]) Let A ∈ Rn×m with n < m,
x̃ ∈ Rm, w̃, b ∈ Rn, Q ∈ Rm×n, and R, S ∈ Rn×n be given.
Assume ∥I − QT Q∥2 ≤ µ < 1 and ∥S (RT QT − A)∥2 ≤ ρ <√

1 − µ. Then A has full rank and

∥A+b − x̃∥2 ≤ ∥x̃ − AT w̃∥2 +
∥S (Ax̃ − b)∥2√

1 − µ − ρ
. (4)

The bound can be computed in 6m2n+8mn2+ 10
3 n3+O(m2)

operations.

The computing time is proportional to O(m2n) opera-
tions. A verification method requiring only O(mn2) oper-
ations is obtained by the following lemma. If the matrix is
not far from square, there is not much difference in comput-
ing time; the new method becomes faster in case of many
unknowns compared to few constraints.

Lemma 4 Let A ∈ Rn×m with n < m, x̃ ∈ Rm, w̃, b ∈ Rn,
S ∈ Rn×n, and p ∈ {1, 2,∞} be given. Define Y := S A and
suppose ∥I − YYT ∥p ≤ α < 1. Then A has full rank and,
abbreviating ρw̃ := x̃ − AT w̃ and ρx̃ := Ax̃ − b,

∥A+b − x̃∥2 ≤ ∥ρw̃∥2 + ∥YT S ρx̃∥2 +
α

√
1 − α

∥S ρx̃∥2 . (5)

The bounds can be computed in 4mn2 + 4
3 n3 +O(m2) oper-

ations.

A similar fast method for least squares problems was not
known. In contrast to underdetermined systems, the er-
ror of some x̃ to the least squares solution can be bounded
knowing only the residual Ax̃− b. For a given approximate
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solution x̃, Lemma 2 implies for ∥I − PA∥2 ≤ α < 1 the
straightforward but pessimistic bound

∥A+b − x̃∥2 = ∥A+(AT )+ρ∥2 ≤ [∥P∥21 − α]2 ∥ρ∥2 , (6)

where ρ := AT (Ax̃ − b). Note that ρ = 0 for the solution
x̃ = A+b. In general, however, this bound is poor.

The following result is based on an approximate QR-
decomposition of A. For S denoting an approximate in-
verse of R, AS can be expected to be not too far from or-
thogonality. Note that often m ≫ n for A ∈ Rm×n, so that
the computational effort to compute S is not too large com-
pared to that for the QR-decomposition.

Lemma 5 Let A ∈ Rm×n with m ≥ n, x̃ ∈ Rn, w̃, b ∈ Rm,
S ∈ Rn×n, and p ∈ {1, 2,∞} be given. Define X := AS and
suppose ∥I − XT X∥p ≤ α < 1. Then A has full rank and,
abbreviating ρx̃ := Ax̃ − w̃ − b and ρw̃ := AT w̃,

∥x̃ − A+b∥p ≤
∥S ∥p
1 − α ·

(
∥XTρx̃∥p + ∥S Tρw̃∥p

)
(7)

for p ∈ {1, 2,∞}. The bounds can be computed in 4mn2 +
4
3 n3 + O(m2) operations.

A main point to improve the accuracy of the error bounds
are newly developed residual iterations. In both problems,
underdetermined systems and least squares problems, the
ill-conditioning of the normal equations appear in the com-
putation of a residual. Thus it is important to compute a
residual as accurate as possible.

To this purpose we developed algorithms for accurate
computation of dot products, see [5, 8]. Those are based on
methods already proposed by [3], which represent the sum
or product of two floating-point numbers a, b by the sum of
an approximation x and an error term y, i.e. a+b = x+ y or
ab = x + y, respectively. Both equations are satisfied with
mathematical equality. Recently those methods are called
“error-free transformations” and receive increasing interest
[2].

Some computational results for the new algorithms on
matrices of the Florida matrix collection [1] are shown in
Table 1. The sparsity is between 0.02 and 25%. As can
be seen the error bounds are correct up to 12 to 15 decimal
digits.

More details and also more test results for underdeter-
mined linear systems and least squares problems as well
as comparisons to other existing methods are shown in
[7]. The new algorithms are significantly faster than known
methods.
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