
 
Transmission Area through the Small Aperture 

Backed by Lossy Cavity 
Jong Hwan Lee1, Hyuk Woo Son1, Ji Whan Ko2, #Young Ki Cho1 

1 School of Electrical Engineering and Computer Science, Kyungpook National University 
1370 Sangyuk-Dong, Buk-Gu, Daegu, Korea, 

btlink08@naver.com, jacklywu486@nate.com, ykcho@ee.knu.ac.kr 
2 School of Electronic Engineering, Kumoh National Institute of Technology 

1, Yangho-Dong, Gumi, Gyeongbuk, Korea, kojh@kumoh.ac.kr 
 
 
 

1. Introduction 
 
 The various problems of electromagnetic coupling from one region to another through a 
aperture have been studied in the electromagnetic community. The work by Harrington [1] on a 
long rectangular aperture with capacitor installed in the middle of the aperture showed that effective 
transmission area(transmitted power normalized to incident power density) is 3λ2/4π [m2]. Recently 
several differently shaped apertures[2,3] have been introduced to demonstrate that effective 
transmission area can be also 3λ2/4π [m2] under resonant condition. 

When an aperture is backed by a lossy cavity, what the maximum transmission area through 
the small coupling aperture will be is a natural curiosity. In order to solve the curiosity, a 
rectangular cavity with a small coupling rectangular aperture is investigated in this paper. In 1982, 
Liang[4] studied on the similar problem to the present one but he did not obtain the maximum 
transmission area. So we are going to focus our attention to investigating the condition for the 
maximum transmission through the small coupling aperture backed by lossy cavity. In particular the 
effect of the end wall conductivity on the internal field inside the cavity is examined by use of the 
approximate perturbation method. 
 
2. Transmission line approach and equivalent circuit 

 
 Let’s consider the structure of rectangular cavity with a small coupling rectangular aperture 

shown in Fig. 1. iE
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 denote the electric and magnetic field vectors, 

respectively, of the wave which is incident upon the aperture normally. The medium constants 
( 0ε and 0µ ) inside the cavity are assumed to be the same as those of the free space, xL  and yL are 
width and height  of aperture, respectively, and d is the length of cavity. Width a  and height b  of a 
rectangular cavity were chosen so that only dominant mode propagates. The geometrical parameters 
and the end wall conductivity of the cavity are assumed to be chosen for maximum absorption. 
 The equivalence principle allows the use of an equivalent magnetic current 

0 0ˆM z E V M= × =
  

 over the aperture region. Here, ẑ  is the unit vector in the direction of 

propagation of the incident wave, E


 is the electric field intensity at the aperture, and 0V  is an 
unknown coefficient to be determined. To determine the coefficient 0V , use is made of the 
requirement that the tangential component of the magnetic field is continuous across the aperture. 
This leads to an integral equation which can be converted into a single scalar equation representing 
the generalized Ohm’s law. Using 0M



 as the testing function (Galerkin’s method), we obtain 
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generalized admittances at the aperture, respectively, of the half-space and of the cavity, and I is the 
generalized current source 0 02 i

aperture
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 where 0
iH



 is the incident magnetic field over 

the aperture in free space [5].  
We treat a rectangular cavity as a waveguide shorted with length d and express it as every 

transmission line which supports dominant and all high-order modes. Electric and magnetic fields 
are expressed as sum of incident field produced by equivalent magnetic current and reflected field 
in each transmission line terminated by surface impedance sZ  of the end wall whose conductivity 
is given by σ . Note that Electric field and magnetic field distribution inside cavity is assumed to be 
that for perfect conductor consisting of waveguide (perturbation method). 

Fig. 2 shows the equivalent circuit for the present scattering problem. Admittances for the 
transmission lines of all high-order mode are summed to be jB . 1Y , 1β  and  1α  are characteristic 
admittance, phase constant and attenuation constant for transmission line for dominant mode, 
respectively. A turn ratio A  is included in order to represent the dependence of dominant mode field 
amplitude on amplitude of the equivalent magnetic current M



.  
 
3. Aperture-Cavity Resonances and Maximum Transmission Area 
 

In Fig. 2, for the resonance condition to be met, the imaginary part of the total admittance 
(seen by the current source I) should be zero. Fig. 3 shows the equivalent circuit when the cavity 
length d is chosen such that the resonance condition may be satisfied. There are two values of the 
cavity length under the resonance condition. These two values of the cavity length have been found 
under the assumption that all the inside walls of the cavity be made of the copper except the 
inputside wall including the coupling aperture.  

One resonant cavity length is 1 g0.4937348d λ= , where gλ  means the waveguide 

wavelength. Fig. 4 illustrates the electric field distribution for both cases that 1 g0.4937348d λ=  

and 2 g0.49999917d λ= . It is seen that standing wave patterns are set up for both cases, but, the 

standing wave field for 1 g0.4937348d λ=  is much stronger than that for 2 g0.49999917d λ= . 

The resonance for 1d  is more important than that for 2d  because the resonance case for 1d  can be 

used to make a bG G=  
When 1 g0.4937348d λ=  , the 82.1 10 [ ]bG −= ×   is obtained for the case that the inside 

wall of the cavity is made of copper as mentioned earlier. This value of 82.1 10 [ ]bG −= ×   is, 
however, much smaller than 79.8418 10 [ ]aG −= ×  . So in order for the maximum transmission 
condition( a bG G= ) via aperture as well as the above resonance condition(cancellation of the 
imaginary part of the total admittance) to be met, we need to investigate the conductivities of 
various materials which can give the values of bG  comparable to aG . 

In Table 1. important quantities such as sR , 1d , bG , and effective transmission area versus  

the various conductivities are listed. From this table it is seen that for 42.7 10 [ / ]S mσ = × , the 
conductance bG  can be made to be almost the same as the conductance aG . Besides, for 

42.7 10 [ / ]S mσ = ×  the effective transmission area is seen to amount to 2 20.7815 / [ ]mλ π , 
which corresponds almost to 2 23 / 4 [ ]mλ π . This discrepancy is thought to be mainly due to the 
approximate perturbation method which has been used in calculation procedure of internal field 
inside the cavity. 

 
4. Discussions and Conclusion 
 



In order for the maximum transmission through the aperture to occur, two conditions should 
be satisfied. One condition is that standing wave should be established. As this result the imaginary 
part of the total admittance vanishes to zero. The other one is that the real part aG  of the 

aY (admittance looking into the left half space) should be equal to the real part of bG  of the bY  
(admittance looking into the lossy cavity). The transmission area is found to be 3λ2/4π when the 
above two conditions are met. It is interesting to note that this transmission area is the same as that 
for the transmission area for the resonant aperture[2]. 
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Fig. 1(a): One rectangular cavity with a small coupling rectangular 

aperture and that applying equivalence principle 
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Fig. 1(b): Dimineisons (λ=3 [m], a=0.765λ, b=0.339λ, Lx=0.25λ, Ly=0.02λ) 
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Fig. 2: Equivalent circuit representation 
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Fig. 3: Equivalent circuit for resonance 
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Fig. 4 the electric field distribution for cases that 1 g0.4937348d λ=  and 2 g0.49999917d λ= . 

Table 1. sR , 1d , bG and effective transmission area versus the various conductivities 
 σ (conductivity) 

[S/m] 
sR  [Ω] 1d [m] bG  [ ] Effective 

transmission 
area [m2] 

Copper 5.8×107 0.0026 1.9605 2.1×10-8 0.0649 λ2/π 
Bronze 107 0.0063 〃 5.1×10-8 0.1475 λ2/π 
 106 0.0199 〃 1.62×10-7 0.3804 λ2/π 
 105 0.0628 〃 5.11×10-7 0.7050 λ2/π 
Graphite 7×104 0.0751 〃 6.1×10-7 0.7401 λ2/π 
 3×104 0.1147 〃 9.31×10-7 0.7812 λ2/π 
 2.7×104 0.1209 〃 9.84×10-7 0.7815 λ2/π 
 2×104 0.1405 〃 1.12×10-6 0.7765 λ2/π 
 104 0.1987 〃 1.62×10-6 0.7327 λ2/π 
 103 0.6283 〃 5×10-6 0.4093 λ2/π 
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