
IEICE Proceeding Series

Memory Reduced Implementation of Error-Free Transformation of
Matrix Multiplication and its Performance

Katsuhisa Ozaki, Takeshi Ogita, Shin'ichi Oishi

Vol. 1 pp. 877-880
Publication Date: 2014/03/17
Online ISSN: 2188-5079

©The Institute of Electronics, Information and Communication Engineers

Downloaded from www.proceeding.ieice.org

Memory Reduced Implementation of Error-Free Transformation of Matrix
Multiplication and its Performance

Katsuhisa Ozaki1), Takeshi Ogita2) and Shin’ichi Oishi3)

1) Department of Mathematical Sciences, Shibaura Institute of Technology
307 Fukasaku, Minuma-ku, Saitama-shi, Saitama 337-8570, Japan

2) Division of Mathematical Sciences, Tokyo Woman’s Christian University
2-6-1 Zempukuji, Suginami-ku, Tokyo 167-8585, Japan
3) Faculty of Science and Engineering, Waseda University
3-4-1 Okubo, Shinjyuku-ku, Tokyo 169-8555, Japan

Email: ozaki@sic.shibaura-it.ac.jp, ogita@lab.twcu.ac.jp, oishi@waseda.jp

Abstract—This paper is concerned with accurate nu-
merical algorithms for matrix multiplication. Recently,
error-free transformation for matrix multiplication is devel-
oped by the authors. It is shown that the transformation
is not only useful for accurate numerical computations but
also suitable for high performance computing. However,
the algorithm requires much amount of working memory.
In this paper, how to overcome this drawback is discussed
without significant slowdown of the computational perfor-
mance.

1. Introduction

In this paper, we discuss a fast and accurate algo-
rithm for matrix multiplication by floating-point arithmetic.
Floating-point arithmetic is widely used in scientific com-
puting. However, since a floating-point number has finite
information, rounding error may occur in each arithmetic
operation. Then, we may obtain an inaccurate result in the
worst case due to accumulation of rounding errors. A way
to overcome this problem may be to use multi-precision
libraries, for example GMP, MPFR [6], exflib [7] and so
forth. For matrix multiplication, an accurate algorithm for
dot product [2] is also useful.
Recently, we proposed an error-free transformation for

matrix multiplication [5]. It transforms a matrix multi-
plication into an unevaluated sum of several floating-point
matrices. After this transformation, we can apply accurate
summation algorithms, for example, [2, 3, 4] and so forth.
It is shown that the transformation is not only useful for
accurate numerical computations but also suitable for high
performance computing. However, the algorithm requires
much an amount of working space since a matrix is divided
into several matrices. In this paper, we propose blockwise
computations for [5] to overcome this drawback.

2. Previous Work

In this section, we introduce our previous work [5]. Let
F be a set of floating-point numbers as defined by the IEEE

754-2008 standard [1]. Let u be the relative rounding error
unit, for example, u = 2−53 for binary64. fl(· · ·) means a
result of floating-point arithmetic, whose rounding mode is
rounding to nearest. For x, y ∈ Fn, an inequality x < y
shows xi < yi for 1 ≤ i ≤ n. |x| shows (|x1|, |x2|, . . . , |xn|)T .
These notations are similarly extended to matrices, e.g. A <
B and |A| for A, B ∈ Fn×n. Assume that neither overflow and
underflow occur in fl(· · ·).
Let A = (ai j) ∈ Fm×n, B = (bi j) ∈ Fn×p and

β =

⌈
log2 n − log2 u

2

⌉
. (1)

Two vectors σ ∈ Fm and τ ∈ Fp are defined by

σ(1)i = 2
β · 2v(1)i , τ(1)j = 2β · 2w

(1)
j

where v(1) ∈ Fm and w(1) ∈ Fp are

v(1)i = �log2 max1≤ j≤n
|ai j|�, w(1)j = �log2 max1≤i≤n

|bi j|�. (2)

For e = (1, 1, . . . , 1)T , we compute

A(1) = fl
(
(A + σ(1) · eT) − σ(1) · eT

)
,

A(2) = fl
(
A − A(1)

)
,

B(1) = fl
(
(B + e · (τ(1))T) − e · (τ(1))T

)
,

B(2) = fl
(
B − B(1)

)
. (3)

Then
A = A(1) + A(2), B = B(1) + B(2).

Next, we define σ(2) and τ(2) from A(2) and B(2)

σ(2)i = 2
β · 2v(2)i , τ(2)j = 2β · 2w

(2)
j

where v(2) and w(2) are

v(2)i = �log2 max1≤ j≤n
|a(2)i j |�, w(2)j = �log2 max1≤i≤n

|b(2)i j |�.

2012 International Symposium on Nonlinear Theory and its Applications
NOLTA2012, Palma, Majorca, Spain, October 22-26, 2012

- 877 -

From A(2) and B(2), A(2), A(3), B(2) and B(3) are obtained by

A(2) = fl
(
(A(2) + σ(2) · eT) − σ(2) · eT

)
,

A(3) = fl
(
A(2) − A(2)

)
,

B(2) = fl
(
(B(2) + e · (τ(2))T) − e · (τ(2))T

)
,

B(3) = fl
(
B(2) − B(2)

)
.

From the above-mentioned discussion,

A(2) = A(2) + A(3), A = A(1) + A(2) + A(3),
B(2) = B(2) + B(3), B = B(1) + B(2) + B(3).

Generally, let σ(k) ∈ Fm and τ(k) ∈ Fp be

σ(k)i = 2
β · 2v(k)i , τ(k)j = 2β · 2w

(k)
j (4)

where v(k) ∈ Fm and w(k) ∈ Fp are

v(k)i = �log2 max1≤ j≤n
|a(k)i j |�, w(k)j = �log2 max1≤i≤n

|b(k)i j |�.

Then, A(k), A(k+1), B(k) and B(k+1) are obtained by

A(k) = fl
(
(A(k) + σ(k) · eT) − σ(k) · eT

)
, (5)

A(k+1) = fl
(
A(k) − A(k)

)
, (6)

B(k) = fl
(
(B(k) + e · (τ(k))T) − e · (τ(k))T

)
, (7)

B(k+1) = fl
(
B(k) − B(k)

)
. (8)

Let A = A(1) and B = B(1). If we compute (5), (6), (7)
and (8) for k = 1, 2, . . . in turn, then nA, nB ∈ N exist such
that

A =
nA∑
r=1
A(r), B =

nB∑
s=1
B(s), A(nA+1) = Omn, B(nB+1) = Onp

(9)
where Omn means the m-by-n zero matrix. If all A(r) and
B(s) are generated by (5) and (7), then it is proved in [5]
that

A(i)B(j) = fl(A(i)B(j)), 1 ≤ i ≤ nA, 1 ≤ j ≤ nB. (10)

Hence,

AB =
nAnB∑
k=1
C(k),

where C(1) = fl(A(1)B(1)), . . . ,C(nAnB) = fl(A(nA)B(nB)).
Therefore, a matrix multiplication can be transformed into
an unevaluated sum of floating-point matrices. Let com-
puted results for the sum of floating-point matrices by ac-
curate summation algorithms [3, 4] be R, S ∈ Fm×p respec-
tively, then

|R − AB| ≤ 2u|AB|, |S − AB| ≤ u|AB|. (11)

(11) shows that relative accuracy is guaranteed. We define
the following function

C = accmul(A, B)

where C is a faithfully rounded result by combining our
error-free transformation and the accurate summation al-
gorithm [3].
When we compute a matrix multiplication, a function

supported in optimized BLAS tends to be used, for ex-
ample, GotoBLAS2 and Intel Math Kernel Library. Be-
cause of (10), level 3 fraction for our algorithm is quite
high. Therefore, the algorithm receives much benefit by
such optimized BLAS in terms of computational perfor-
mance. However, since we split both input matrices into
sum of several floating-point matrices and the results of
floating-point matrix products are saved, the algorithm re-
quires much an amount of working space.
From the later discussion, let A, B ∈ Fn×n for simple dis-

cussion. Assume that A and B are split into nA and nB ma-
trices respectively. Let μ be a space for keeping an n-by-n
floating-point matrix, namely, 8n2 bytes for binary64. The
required amount of working space is as follows:

• nAμ for splitting of A
• nBμ for splitting of B
• nAnBμ for keeping the result of A(i)B(j)

Then, total amount of working space becomes

(nA + nB + nAnB)μ. (12)

In the next section, we propose a method to reduce the
amount of working memory.

3. Proposed Algorithm

In this section, we use several MATLAB notations. For
the simple discussion, A, B ∈ Fn×n and assume that n is a
multiple of a block size b, i.e. n = bk, k ∈ N. Let block
matrices be

Ai = A(b ∗ (i − 1) + 1 : b ∗ i, :) ∈ Fb×n,
Bj = B(: , b ∗ (j − 1) + 1 : b ∗ j) ∈ Fn×b.

Then

A = [A1; A2; . . . ; Ak], B = [B1, B2, . . . , Bk].

Let C := AB and

Ci j = C(b ∗ (i − 1) + 1 : b ∗ i, b ∗ (j − 1) + 1 : b ∗ j).

Then, we can obtain blockwise results by Ci j = AiBj, 1 ≤
i, j ≤ k. The following is an algorithm of block computa-

- 878 -

tions with a number of partitions k.

accmul block(A, B, k)
d = n/k;
for i = 1 : k
for j = 1 : k
C((i − 1)d + 1 : i ∗ d, (j − 1)d + 1 : j ∗ d) =
accmul(A((i − 1)d + 1 : i ∗ d, :)∗
B(:, (j − 1)d + 1 : j ∗ d));

end

end

end

For the implementation of accmul block(A, B, k), the re-
quired working memory becomes

(nA + nB)μ/k + nAnBμ/k2.

Therefore, it is shown that the working space can be re-
duced compared to (12).

4. Numerical Examples

In this section, we show the performance of block com-
putations. Two matrices are generated by MATLAB built-
in function

A = randn(n), B = randn(n),

where the function randn(n) generates an n-by-n matrix
whose elements are normally distributed with mean 0, vari-
ance 1. We tested examples on the following three environ-
ments:

• Core i7-2620M (2 cores, 16 GBytes memory)
• Xeon 5550 (totally 8 cores, 96 GBytes memory)
• Xeon 5560 (6 cores, 48 GBytes memory)

Code for block computations is compiled by Intel Parallel
Studio through MATLAB external interface. For compari-
son, Table 1 shows computing time for pure matrix multi-
plication AB for various n.
Tables 2 ,3, 4 show computing time for

accmul block(A, B, k) with various n and k. k = 1
in tables means that accmul(A, B) is executed. Notation
‘-’ in Table 2 means that algorithm stopped due to lack of
working space. From the all tables, it is confirmed that
block computations do not significantly slow down the
performance of the computations, maximally 20 % slower
than the original algorithm accmul.

Conclusion

We show the computational performance of blockwise
computation of [5]. Numerical results show that blockwise
computations do not significantly slow down the compu-
tational performance and efficiently reduce the amount of
working space.

Table 1: Comparison of computing time

n Core i7-2620M Xeon 5550 Xeon 5650
1000 0.066 0.034 0.035
2000 0.392 0.329 0.257
4000 2.821 1.573 1.992
8000 24.21 12.91 15.64

Table 2: Comparison of computing time (Core i7-2620M)

k \ n 1000 2000 4000 8000
1 0.96 6.77 53.71 -
2 1.05 7.05 56.07 556.89
4 1.08 7.82 59.37 571.30
5 1.13 8.04 63.05 585.77

Acknowledgments

This research was supported by CREST program, Japan
Science and Technology Agency (JST).

References

[1] ANSI: IEEE Standard for Floating-Point Arithmetic,
Std 754–2008, 2008.

[2] T. Ogita, S. M. Rump, S. Oishi: Accurate sum and dot
product, SIAM J. Sci. Comput., 26, 1955–1988 (2005).

[3] S. M. Rump, T. Ogita, S. Oishi: Accurate Floating-
Point Summation Part I: Faithful Rounding, SIAM J.
Sci. Comput., 31:1, 189-224 (2008).

[4] S. M. Rump, T. Ogita, S. Oishi: Accurate Floating-
Point Summation Part II: Sign, K-fold Faithful and
Rounding to Nearest, SIAM J. Sci. Comput., 31:2,
1269-1302 (2008).

[5] K. Ozaki, T. Ogita, S. Oishi, S. M. Rump: Error-Free
Transformation of Matrix Multiplication by Using Fast
Routines of Matrix Multiplication and its Applications,
Numerical Algorithms, 59:1, pp. 95-118 (2012).

[6] The MPFR Library: http://www.mpfr.org/

Table 3: Comparison of computing time (Xeon 5550)

k \ n 1000 2000 4000 8000
1 0.67 4.14 32.65 272.7
2 0.67 4.29 28.29 272.7
4 0.74 4.60 29.67 265.9
5 0.77 4.81 30.72 280.0

- 879 -

Table 4: Comparison of computing time (Xeon 5650)

k \ n 1000 2000 4000 8000
1 0.74 5.07 36.3 339.3
2 0.76 5.14 36.8 340.3
4 0.85 5.48 37.7 345.8
5 0.86 5.65 38.4 352.4

[7] exflib - extend precision floating-point arith-
metic library: http://www-an.acs.i.kyoto-
u.ac.jp/ fujiwara/exflib/exflib-index.html

- 880 -

