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Abstract—This paper studies basic dynamics and
control of simple switched dynamical systems. The dy-
namics is described by a piecewise constant equation,
the trajectory is piecewise linear and the embedded
return map is piecewise linear. First, using the return
map, we analyze typical periodic/chaotic phenomena
and related bifurcation. Second, combining the instan-
taneous state setting with the bi-section methods, we
present a simple method for exploring and stabilizing a
desire periodic orbit. The performance is investigated
in basic numerical experiments.

1. Introduction

The switched dynamical systems (SDS) are defined
by plural continuous-time subsystems connected by
some discrete switching rules [1]. Depending on the
rule, the SDSs can exhibit interesting periodic/chaotic
orbits and related bifurcation phenomena. There ex-
ist various practical examples of the SDS, such as, the
pwm signal generators in power electronics, switching
power converters, and the sleep-waking-models [2]-[4].
Analysis of the SDS is important not only as basic non-
linear problem, but also as engineering applications.

This paper studies basic dynamics and control of a
simple SDS. The SDS consists of subsystems having
piecewise-constant (PWC) characteristics and switch-
ing rules depending on both time and state variable.
The vector field is PWC, the orbits are piecewise linear
(PWL) and the embedded return map is PWL. Using
the return map, we analyze basic periodic and chaotic
behavior. We then consider an exploring and stabiliz-
ing method (ESM) of a target periodic orbit (PEO).
The desired PEO is given by the return map. When
the target PEO is unknown, the ESM tries to find the
PEO by successive instantaneous state setting based
on the bi-section method. If the ESM is applied to a
sub-region of state variable in which one target exists,
we can explore

stabilize the target. The ESM operation is demon-
strated by simple numerical experiment. Although
there exist many works on analysis and control of the
SDS, this is the first paper of the ESM: a systematic
method that can realize both exploring and stabilizing
simultaneously.

Figure 1: Switched dynamical system

2. Objective System and Return Map

The objective SDS is described by the following di-
mensionless equation:

dx

dτ
=

⎧⎨
⎩

b for x ≤ u(τ) + c ≡ u+(τ)

−b for
x ≥ u(τ) − c ≡ u−(τ)
τ = nT + τr

u(τ) =
{

4d(τ − 1/4) for 0 < τ ≤ 1/2
4d(τ − 3/4) for 1/2 < τ ≤ 1

u(τ + 1) = u(τ)

(1)

where τ is the dimensionless time, x is the dimension-
less state variable and 0 < b. u+(τ) and u−(τ) are the
upper and lower threshold signals based on periodic
triangular waveform with period 1. If the right-hand
side is b then x rises. If x exceeds the u+ then right-
hand side is switched from b to −b as shown in Fig 1.
If the right-hand side is −b then x decays. If x reaches
the u− then the right-hand side is switched from −b to
b. The state variable x can vibrate between u+ and u−.
In addition to this threshold switching, this SDS has
the phase switching: the right-hand side is switched
compulsorily to −b at time n+τr. Figure 2 shows typ-
ical periodic/chaotic waveforms. Note that the phase
switching can cause a variety of waveforms that are
impossible to the SDS with the threshold switching
only in previous works.
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Figure 2: Typical waveforms for b = 5.5, c = 1, d = 0.5
(a) periodic waveform for τr = 0.49, (b) chaotic wave-
form for τr = 0.51 (overlapped drawing), (c) periodic
waveform for τr = 0.7.

In order to analyze the SDS dynamics, we derive the
return map. Let xn be the state variable at the phase
switching at time τr + n. Since xn+1 is determined by
xn, we can define the return map.

xn+1 = F (xn) (2)

Using the exact PWL solution, the return map is de-
scribed by a PWL formula.

We give basic definition of the periodic orbit. A
point p is said to be a periodic point with period k if
p = F k(p) and p �= F l(p) for 0 < l < k where F k is
the k-fold composition of F . A periodic point p with
period 1 is referred to as a fixed point. A periodic
point p is said to be stable and unstable if |DF k(p)| <
1 and |DF k(p)| > 1, respectively, where DF is the
derivative of F . For simplicity, we select τr as a control
parameter and fix other parameters b = 5.5, c = 1 and
d = 0.5. Figure 3 shows return maps corresponding to
wavefroms in Fig. 2. The map in Fig. 3 (a) has one
stable and two unstable fixed points.

Figure 3: Typical return map for b = 5.5, c = 1, d =
0.5 (a) stable fixed point for τr = 0.49, (b) chaos for
τr = 0.51, (c) stable fixed point for τr = 0.7

Figure 4: Bifurcation for τr
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The map in Fig. 3 (b) has three unstable fixed
points. This map exhibits chaotic behavior. The map
in Fig. 3 (c) has one stable and two unstable fixed
points. As the switching phase τr varies, the SDS ex-
hibits bifurcation phenomena as shown in Fig. 4.

3. Exploring and Stabilizing Periodic Orbit

We present the ESM for a desired periodic wave-
form. For simplicity, we consider the case where the
target periodic waveform corresponds to a fixed point
of the return map. We use the unstable fixed point xf

for τr = 0.51 in Fig. 3 (b) as an example.

Target fixed point: xf = F (xf )

We then assume that the target exists in some closed
interval and F is monotonically decreasing

xf ∈ [q, p] ≡ Is, DF (x) < 0 for x ∈ Is

We define the ESM for the case DF (x) < 0 that can
be translated easily to the case DF (x) > 0. Let l be
the counter of the ESM.

Step 1. Let l = 1 and let τl = τr + l.

Step 2. Let xMl
= (p + q)/2. Apply xMl

as initial
condition at τ = τl to Eq. (1).

Step 3. Observe the x at time τl + 1. If |x(τl + 1) −
x(τl)| < ε, then x(τl) is the approximate solution
of the target and the ESM is terminated. Other-
wise go to 4.

Step 4. If x(τl + 1) > x(τl) then x(τl + 1) → q. If
x(τl + 1) < x(τl) then x(τl + 1) → p.

Step 5. l + 1 → l, go to 2 and repeat until the maxi-
mum time limit τmax.

Figure 5 shows the ESM in the return map where
x(τl) and x(τl+1) correspond to xn and f(xn), respec-
tively. Figure 6 shows corresponding waveform where
we can confirm the process of the ESM.

4. Conclusions

Basic dynamics of the simple SDS and the ESM for
a desired periodic orbit is considered in this paper.
The dynamics can be analyzed by the PWL return
map and the ESM is realized by combination of the
instantaneous state setting and the bi-section.

Future problems include exploring the existence re-
gion Is (global search), laboratory experiment and ap-
plication to practical systems.

Figure 5: Exploring and stabilizing process in return
map

Figure 6: Exploring and stabilizing process in time-
domain
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